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Abstract In Lianas and Lantaron, J. Sci. Comput. 46, 485-518 (2011) we proposed an al­
gorithm (EDAS-<i) to approximate the jump discontinuity set of functions defined on subsets 
of Rd. This procedure is based on adaptive splitting of the domain of the function guided by 
the value of an average integral. The above study was limited to the ID and 2D versions of 
the algorithm. In this paper we address the three-dimensional problem. We prove an integral 
inequality (in the case d = 3) which constitutes the basis of EDAS-3. We have performed 
detailed computational experiments demonstrating effective edge detection in 3D function 
models with different interface topologies. EDAS-1 and EDAS-2 appealing properties are 
extensible to the 3D case. 
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1 Introduction 

1.1 The Edge Detection Problem 

The recent development of 3D acquisition technologies has emphasized the need of tech­
niques for the understanding of volumetric data sets in several fields. For example, 3D med­
ical imaging try to model organs and internal structures of the human body. These models 
are important in image guided surgery, diagnostics, etc. [8, 10, 33]. Other application areas 
include the determination of the interface which separates two or more different material 
media [12, 30] and the enhancement of some numerical algorithms [2]. 



The detection of objects in volumetric data sets is a challenging problem due to the size 
of the data and the variability of the features of interest. Depending on the concrete analysis 
task the accurate detection of edges can be very important. For example, the estimation of 
geometric and differential properties of reconstructed object boundaries such as volume, 
curvature or even higher order properties requires particularly accurate edge localization 
algorithms. Due to its technological importance, many procedures have been proposed to 
determine 3D edges (interfaces). Below, we give a (non-exhaustive) classification: 

- Direct Methods. The aim of these methods is to determine the edges of a determined 
function. 
- ID edge detection methods. These procedures can be extended to detect the size and 

position of discontinuities of a multi-dimensional function by holding all but one di­
mension fixed and determining the edges as a function of the fixed coordinates. A prac­
tical application of this method is described in [1, 5]. The concentration edge detection 
algorithm [14] and the Gegenbauer reconstruction method [15] are combined to pre-
process the data. 

- Spatial difference filters [37]. These methods are used for detecting edges in digital 
3D-images. An image is a discretely defined function. Its domain is a set of nodes in 
a regular grid. The local function of this type of filters contains the calculation of the 
difference between density values of an input image. Most 3D filters can be synthesized 
from 2D filters. The 3D difference filters were first reported in [22]. In some cases the 
computation cost of these methods may become excessive. 

- Polynomial fitting method [3, 4]. This method is based on a local polynomial annihila­
tion property on a set of irregularly distributed points in a bounded domain of Rd. 

- Deformable models. These methods consider a geometric object surrounding the in­
terest area (active contour) depending on several parameters. They define an energy 
functional which consists of the sum of an internal and an external energy. When the 
functional in minimized, the internal energy constraints the shape of the active contour 
and the external energy locates the contour in desired image features. 

Deformable models can be broadly classified into explicit or implicit models. 
• Explicit methods (snakes) were introduced by Kass et al. [20] and generalized to 3D 

by Terzopoulos et al. [36]. They represent the object by means of meshes (curves, 
surfaces or solids) which shape evolves in the minimization of energy process. How­
ever, since the model topology is created before the deformations, explicit models 
are not generally able to segment complex shapes with genus higher than 0. In or­
der to overcome this limitation, several methods have been developed in past years: 
T-snakes [26], active volume methods [7, 32], etc. 

• Implicit methods (level set formulation) In the late 1990s, Sethian et al. [31] pro­
posed a new framework called level set. The basic idea was to embed the contour 
evolution into iso-value curves of a function with higher dimensionality. Such func­
tions were called level set functions. This kind of representation of contours and 
surfaces provides topological flexibility in the segmentation process so that the topo­
logical changes are automatically handled. However, it makes difficult the user in­
teraction and increases the computational cost. A recent formulation of this method 
is given in [27]. 

Deformable models present some inconveniences such as sensibility to the initial con­
tours, stopping at local minima of the energy, slowness, and computational cost. 

- Indirect Methods. The aim of these methods is to divide the domain of the function into 
a collection of homogeneous subsets (segmentation). Edges appear as the boundaries of 
these subsets. These methods are less efficient than direct methods. Examples of these 



procedures include region-based algorithms [21, 42] and registration based segmentation 
[35]. 

1.2 An Adaptive Splitting Algorithm for 3D Edge Detection 

Adaptive splitting procedures have been used in approximation theory (see, for example 
[25], and the references therein). Adaptive meshing methods for edge detection have been 
studied mainly in the context of image processing (discretely defined functions). In image 
multiscale analysis, adaptive (nonuniform) grids for the finite element method applied to 
the Perona-Malik equation [29] with the modification suggested in [11] were studied in [6] 
(3D case). In image segmentation and representation (see [23] for a recent account), many 
algorithms are based on adaptive approaches. Most adaptive methods produce an image 
segmentation using a variant of the split and merge method [18, 41]. 

An adaptive splitting approximation algorithm was proposed in [25]. In [24] it was 
proved (for d = 1 and d = 2) that the average integral used in its splitting criterion is an 
effective jump detector. These results imply that the algorithm is divergent for functions 
with jump discontinuities, but they allow us to modify it to obtain an efficient edge detection 
method. 

In this paper we extend the above results to the three-dimensional case. We study the 
capability of EDAS-3 to detect 3D edges. The parameters of the original approximation 
algorithm have a new additional meaning. The local error gives the detection threshold. 
The stopping criterion gives the precision of the obtained jump points. We introduce new 
parameters to optimize the search for jumps and the numerical computations. 

EDAS-3 is an algorithm to detect jump discontinuities of functions defined by data in the 
physical space. The domain of the function is supposed to be the difference of a convex set 
and a set of Lebesgue measure zero (continuously defined functions). Its output consists of 
an approximation of the jump discontinuity set of the function (see Sect. 2). It is based on 
an integral inequality fulfilled by the sets containing a jump discontinuity. 

The algorithm builds a piecewise affine function which provides a rough approximation 
of / away from the discontinuities. In the neighbourhood of an edge, this function is a good 
approximant. The integrals whose evaluation is necessary to obtain the piecewise affine 
function are computed by numerical methods which are exact for polynomials of a certain 
degree. This provides an "implicit smoothing" of the target function, that accelerates the 
convergence away from the discontinuities and makes the algorithm robust in the presence 
of noise. 

The choice of the local error is guided by the magnitude of the searched jumps rather 
than by the degree of approximation away from the discontinuities. This allows to obtain 
good results with a poor approximation (homogeneity property) when the magnitude of the 
jumps is large enough. 

When we apply EDAS-3 to determine the edges of a 3D image (discrete function), we 
extend it to a function defined on a cube containing the discrete domain (see Sect. 4.4). The 
resulting function is piecewise constant (each voxel is represented by a cube and the function 
is constant on it). EDAS-3 does not try to segmentate the image, because it is not concerned 
about its accurate approximation. EDAS-3 determines a set of tetrahedra containing jump 
discontinuity points. The approximate result is a flexible set of tetrahedra instead of a rigid 
set of surfaces. The numerical cubature process is faster than operations involving large 
amounts of voxels. The average integral criterion, the implicit smoothing and a suitable 
choice of the minimum magnitude of jump reported can reduce the distortion due to the 
noise of the image. 



The search procedure of EDAS-3 and its flexible way of representing interfaces allow 
to handle automatically topological changes. In addition, EDAS-3 overcomes some of the 
limitations of deformable models: 

Initial conditions (contours), are not necessary. 
It is not a variational approach. This avoids the problem of stopping at local minima 
of the energy. 
It does not need to use complicated data structures. The implicit smoothing implies a 
relatively fast processing. 

Finally, in the case of complex problems, we can partition the domain and apply EDAS-3 
independently to each subdomain. This allows parallel processing. 

This paper is organized as follows. Section 2 gives some mathematical preliminary re­
sults and states the main result of the article. In Sect. 3 we recall the EDAS-<i algorithm and 
detail its implementation for d = 3. Section 4 presents 3D computational experiments with 
synthetic and real models. Section 5 provides some concluding remarks. The paper is closed 
with an Appendix containing the proof of Theorem 1. 

2 Mathematical Preliminaries 

Let R C W be a compact <i-interval. We say that a function g : R -> R is quasi-continuous 
if the set of points where g is not continuous has zero Lebesgue measure. 

Consider a finite collection {C,}"=1 of connected sets with pairwise disjoint nonempty 
interiors such that 

n 

Let {/,- : i = 1 , . . . , n} be a set of continuous functions on R. Define the function 

/ (x ) = /Kx) if X G Q , 

where C denotes the interior of C. We say that / is a general piecewise continuous function. 
If Q , i = 1 , . . . , n, are closed and convex sets, we say that / is a piecewise continuous 
function. Since the boundary of a convex set has zero Lebesgue measure, all piecewise 
continuous functions are quasi-continuous. 

In the above definition, if the functions f, i = 1 , . . . , n, are constant, we say that / is a 
general piecewise constant function and a piecewise constant function, respectively. 

Let / be a general piecewise continuous function and let r,- be the boundary of Q , 
i = 1 , . . . , n. Define T = U"=1 r,-. Let x e T, then for some m < n, x e i y , j = 1 , . . . , m, 
where ij e {1, 2 , . . . , « } . Define 

A= max {/;,(x)}, and B = min {/;,(x)}. 
j=l,...,m j=l,...,m 

If A ^ B we say that / has a jump discontinuity at x (we also say that x is a jump point). We 
call \A — B\ magnitude of the jump of / atx. The set of points in T with jump discontinuities 
is called jump discontinuity set and denoted by TJ. We call edge any subset of the jump 



discontinuity set. The set of points in FJ with magnitude of jump greater than I is denoted 
by Ff. The set of points in FJ with magnitude of jump greater than I and lower than u is 
denoted by TJ

lu. Our aim is to obtain a good approximation of these sets for a given function. 
We use the term interface as an abbreviation for jump discontinuity set. 

The d-simplex T generated by the set of affinely independent vectors {vo, v i , . . . , v^}, 
denoted by (v0, Vi , . . . , vd), is defined to be the convex hull of the vectors v0, Vi , . . . , vd. We 
denote by \T\ the diameter of a <i-simplex T. 

Consider a function / : T C W -> R. We denote by LTf, the unique affine map such 
that 

LTf(vj) = f(vj), j=0,l,..-,d. 

In this section we study the average integral 

A W ) : 
fT\f(x)-LTf(x)\dx 

v(T) 

where v(T) denotes the Lebesgue measure of T. 
As we prove below, the behavior of AIT(f) depends on the continuity or lack of conti­

nuity of / on T. This fact lays the foundation for the algorithm proposed in the next section. 
The comportment of AIT(f) when / is continuous is given by the following result. 

Proposition 1 ([13]) Let X c M ^ t e compact and let f : S -> R be continuous. Then given 
e > 0, there exists S > 0 such that 

| / ( x ) - L r / ( x ) | < e 

for all xeT, where T is a d-simplex contained into S with \T\ < 8. 

Corollary 1 Let S C Rd be compact and let f : S -> R be continuous. Then given e > 0, 
we have that AIT(f) < e for any small enough d-simplex T C S. 

If / is smooth the above result can be sharpened, see [24]. 
From the above result, we can conclude, in the case of continuous functions, that 

A / r ( / ) —>• 0 as |T| approaches zero. We study below the case in that / presents jump 
discontinuities on T, when d = 3. 

From now on, we limit ourselves to the case where f(x) is a function of Heaviside type. 
This suffices to study image processing applications and functions with smooth T J. 

Consider the Heaviside function 

fo, i f x < 0 , 

[ l , i f x > 0 . 

We have 

Theorem 1 Let h : R3 —»• R be the function defined by 

h(x) = JH{ax\ + bx2 + ex?, + d), 

where a, b, c, d, and J are real numbers such that either a or b or c are distinct from zero 
and J > 0. Define r = {x = (xi,x2, x3) e R3 : ax\ + bx2 + cx3 + d = 0} and let T be an 



arbitrary tetrahedron in R3 such that r C\t ^0. Then 

1J jT\h(x)-LTh(x)\dx 3 / 
<" — — - — < — , (1) 

32 ~ v(T) ~ 4 

where v(T) is the volume ofT. 

The proof of this theorem is given in the Appendix. 

3 Edge Detection by Adaptive Splitting Algorithm 

3.1 Statement of the Algorithm 

We state the algorithm in the <i-dimensional case. Consider the <i-interval R = [a, b], where 
a,b eW. We can find n (closed) simplices Tt such that 

tt n fj = 0, i ^ i, 
n 

{jTi = R, 
i=i 

(for example, see [9, 28]). We call P = {Tt}"=1 a partition of R. The set of partitions of R is 
denoted by V(R). Given a <i-simplex T we denote by V(T) the set of its vertices. 

The proposed algorithm builds a partition P e V(R) and the associated piecewise affine 
approximant L (x) defined by 

L(x) = LTf(x) ifxeTcP. 

The average integral 

A W ) 
fT\f(x)-LTf(x)\dx 

v(T) 

can be considered as the local error of the approximant L. 
Given a function / : R —»• R and an initial partition Pi of R, denote by E\ the maximum 

local error of the approximant L. In the cases where Theorem 1 can be applied, E\ also 
provides a detection threshold, because the algorithm will detect the jumps with magnitude 
greater than 32£i /7 . Denote by E2 the approximation error of the points in FJ. Let £ 4 be a 
positive real parameter. 

If (AIT(f) < Ei ov \T\ < E2) and \T\ < £ 4 we call T a good simplex, otherwise T is 
called bad. 

We call EA, exploration parameter (in difficult problems, it is necessary to make £ 4 small. 
This is due to the fact that an inaccurate numerical evaluation of AIT(f) can eliminate 
simplices containing points of TJ). 



Edge Detection by Adaptive Splitting Algorithm (EDAS-d) 

Step 1. The good simplices in the initial partition Pi axe put into the set Gi and the bad 
simplices are put into the set B\. 

Step 2. At each step j we have a set of good simplices Gj and a set of bad simplices 
Bj. Divide each bad simplex into two simplices, by splitting its largest edge. Test 
whether these children are good or bad to obtain the sets Gj+i and Bj+i. 

Step 3. The algorithm stops if Bj = 0. Then G = Gj is the searched partition. If the 
stopping criterion is not satisfied, go to Step 2. 

Step 4. Obtain the following subset of G 

ATE ={TeG: AIT(f) > Ex and j " = max {/(«,-)} - min {/(«,-)} > £3}. 
3 VieVfT) v^V(T) 

where £ 3 is the minimum magnitude of jump reported. £ 2 is also a stopping criterion. The 
convergence of this algorithm is guaranteed by the definition of good simplex. ATJ

E is a 
set of simplices containing points of TJ

E . This constitutes an approximation of TJ
E . In the 

cases considered by Theorem 1, we have that ATJ
E D TJ

E . In Sect. 4, instead of describing 
AY I, we have considered the set of barycenters of T e ATJ

E to better visualize the result. 

3.2 Practical Implementation of EDAS-3 

In practice we have implemented the above algorithm using a tree whose leaves correspond 
to good simplices. Tree construction follows a technique similar to that detailed in [25]. The 
integrals fT | / (x) — LTf(x)\dx have been computed using the Grundmann and Moller's 
formula [17]. 

We have considered a positive real parameter £5 (adaptivity of cubature formulas param­
eter). This factor allows to apply higher degree cubature formulas in large regions and low 
degree cubature formulas in small regions. In this way the computational cost is optimized. 
The adaptive cubature procedure is described below. 

- If \T\ < £5, the computations have been done using the Grundmann and Moller's rules 
of degree p = 5,7,9, 11, 13, and 15 with d = 3. Due to the lack of error estimates for the 
Grundmann and Moller's rules, we have followed the usual practice of comparing succes­
sive values of the integral corresponding to an increasing number of points and taking the 
value obtained when the sequence becomes stationary. We denote by AIT(f) the value 
of AIT(f) computed by the cubature rule of degree p. The pseudocode is described by 
the following statements. 

Set p = 5; 

Compute AIT(f) and AIT(f); 

while (\AIP
T(f) - AIP

T
+2(f)\ > E^W && p < 13) 

{ 
p = p + 2; 



if (\AIP
T(f) - AIP

T
+\f)\ < Er/10) Ahif) = AIP

T
+\f); 

else A / r ( / ) = 106; 

- If | r | > £5, the computations have been done using the Grundmann and Moller's rules 
of degree p = 13 and 15 with d = 3. The corresponding pseudocode is listed below. 

if (JA/J? (/) " AIT(I)\ < Ei/10) Ah(f) = Ti\5-
else A / r ( / ) = 106; 

To sum up, the algorithm requires the following positive real parameters 

- E\: Maximum local error of the approximant L and detection threshold. 
- E2: Approximation error of the points in FJ and stopping criterion. 
- £3 : Minimum magnitude of jump reported. 
- £4: Exploration parameter. 
- £5: Adaptivity of cubature formulas parameter. 

3.3 Theoretical Foundation of EDAS-3 

Results in Sect. 2 guarantee the convergence away from the discontinuities and the suitable 
local behavior of EDAS-3. We can consider three cases: 

- Piecewise constant functions whose FJ consists of a set of planes. Theorem 1 can be ap­
plied to most tetrahedra in a partition. 3D images are an example of this type of functions 
(Sect. 4.4). 

- General piecewise constant functions with curved T / . If the interface is smooth enough, 
then Theorem 1 is approximately valid when the tetrahedra become very small (Sects. 4.1, 
4.2 and 4.3). 

- General piecewise continuous functions. In this case, Theorem 1 is not directly applicable. 
In spite of this, EDAS-3 has given good results in some particular cases (Sect. 4.5). 

4 Computational Experiments 

The experimental environment has been the following: 

• CPU QuadCore Intel Core 2 Quad 6700, 2666 MHz. 
• RAM 4GB. 
• Running software Microsoft Visual C. 

We have considered different functions / : R -> R, where R is a cube in R3. Each face 
of R has been divided into four triangles by means of its diagonals. The vertices of these 
triangles and the center of the cube yield a division of R into 24 disjoint tetrahedra. This 
resulting set has been used as the initial partition Pi of EDAS-3. 

Given a function and the parameters {£•, i = 1,5}, we use the following point-based 
representation of the approximated jump discontinuity set to show the results 

P AFE3 = {x G R3 : x is the barycenter of some T e ATJ
E^}. 

Let I, u be real numbers such that I < u. Define 

[\l,u\] = {x = (xi,x2,x3) G PATJ
E :l<x3<u}. 



Table 1 Dependence of E\ on / 
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Fig. 1 (Color online) 
Performance of EDAS-3 
(/ = 10~3): Slice (-0.03,0.03), 
exact solution for xj = 0 (light 
blue line); slice (0.47,0.53), 
exact solution for xj = 0.5 (green 
line); slice (0.72, 0.78), exact 
solution for xj = 0.75 (yellow 
line) 

The slice (I, u) is defined as the projection of [\l, u\] on the plane %\ — x2. All the accom­
panying graphs show (I, u) for different values of I and u. We have represented them as a 
cloud of dark blue points. The intersections of FJ and planes perpendicular to the x3-axis 
(exact solutions) have been drawn as continuous colored lines. 

Numerical data tables include the total number of tetrahedra generated by EDAS-3 
(TNT), and the number of tetrahedra containing jump points inside them (TNJT). 

In all experiments, CPU time is expressed in seconds and denoted by CPU (s). 

4.1 General Properties of EDAS-3 

In this section we study experimentally the following general properties of EDAS-3: 

- Dependence of the parameter E\ on the magnitude of the jump ( / ) . 
- Dependence of the precision on the parameter E2. 
- Robustness against continuous and discontinuous random perturbations. 

To study the dependence of the parameter E\ on / , we have considered the general 
piecewise constant function with spherical interface 

/ l ( X l , X 2 , X 3 ) : 
1, if (xi,X2, X3) G S i , 

1 + / , if (x!,X2,x3) G R — Bi, 

where R = [—4, 4]3 and B\ = {(x!,X2,x3) < 1}. We have determined the 
threshold value of E\ (to obtain acceptable results) corresponding to different values of / . 
The results are reported in Table 1. Figure 1 shows a comparison between the results ob­
tained with EDAS-3 and the exact ones (the graph is the same for all values of / in Table 1). 



Table 2 Dependence of the precision on the parameter E2 
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Fig.2 Precision versus E2-Slice (—0.01,0.01), exact solution for X3 = 0 (light blue line); slice (0.49,0.51), 
exact solution for X3 = 0.5 (green line); slice (0.74, 0.76), exact solution for X3 = 0.75 (yellow line): (a) 
E2 = 0.1, (b) E2 = 0.05, (c) E2 = 0.01 

Since 7/32 ~ 0.22, Table 1 shows a good agreement between the experimental results 
and those predicted by Theorem 1. 

To find the relationship between the precision and the parameter E2, we have considered 
the function f\ with / = 0.5 and E\ = 10 - 1 . We have varied E2- The results are given in 
Table 2. Figure 2 shows how the precision of EDAS-3 increases as E2 decreases. 

To study the effect of continuous noise on the performance of EDAS-3, we have used the 
continuously perturbed function 

f[(xi,x2,x3): 
1 + a sin(100(x! + x2 + X3)), if (xi,x2,x3) e B\, 

1.5 + a sin(100(x! + x2 + x3)), if (x\,x2,x3) e R — B\ 



Table 3 Performance of EDAS-3 on the continuously perturbed function 
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Fig. 3 Performance of EDAS-3 on the perturbed f\ (the endpoints of the slices are the same as those 
in Fig. 2): (a) ff, El = 0.05, co = 0, (b) ff, El = 0.05, co = 0.1, (c) f[p, El = 0.1, co = 0.4, (d) 

f[p, £1 = 0.1, co = 0.5 

The results obtained with several values of co are reported in Table 3. Figure 3(b) shows 
that a noise with magnitude 20 percent of the jump, does not change the result obtained with 
a = 0; see Fig. 3(a). 

Tables 2 and 3 show an increase in the number of tetrahedra that is due to different 
reasons. In Table 2 we increase the precision of EDAS-3 by decreasing the value of the 
parameter E2- As a result, a large increase of tetrahedra arises around the discontinuity sur­
face; see Fig. 13 in [24]. In Table 3 the increase of a makes ff difficult to approximate by 
a piecewise affine function away from the discontinuities. In this case the increase of tetra­
hedra takes place on the whole domain because the approximant requires many tetrahedra 
to approximate ff. 



Table 4 Performance of EDAS-3 on the randomly perturbed function 
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To study the effect of discontinuous random noise on the performance of EDAS-3, we 
have used the randomly perturbed function f[p = fi + a> rp, where 

rp(x1,x2,xi) = r(i1,i2,ii), ij = 0, . . . , 7 9 , 

_ f floor(Aj), if Aj^SO, 
lj=[79, if A ; = 80, 

Aj = 10-(4+ Xj), j = 1,2,3. 

r is a random matrix with 512000 entries between 0 and 1 defined in MATLAB by r = 
ra«<i[80][80][80]. floor (x) is a MATLAB function that gives the largest integer not greater 
than x. The resulting function rp is a piecewise constant random function. 

The results obtained by EDAS-3 for several values of the parameter a are given in Ta­
ble 4. If a is less than 0.5, thresholding (£ 3 = 0.45) avoids the detection of noise jumps; 
see Fig. 3(c). If a = 0.5 the magnitude of many noise jumps equals 0.5 (jump of true edge 
points) and the algorithm detects them; see Fig. 3(d). Since by Theorem 1, the jumps with 
magnitude less than 4£ 1 / 3 are not detected, we can state that implicit smoothing, threshold­
ing and the value of the parameter E\ are the procedures of EDAS-3 to avoid noise effects. 

4.2 General Piecewise Constant Function with Tubular Tree-like Interface 

Blood vessels and airways of the human body form dense tubular tree-like structures. The 
segmentation of these structures in volumetric datasets is of vital interest for many medical 
applications [8, 38]. In the following example we define a function with a multiply connected 
interface which models a vascular/bronchial tube. We need some previous definitions 

e, = (x! - 25)2/16 + (x2 - 25)2/4, e2 = (Xl - 25)2 + (x2 - 25)2, 

e3 = (x! - 10)2/16 + (x2 - 10)2/4, e4 = (xx - 10)2 + (x2 - 10)2, 

e5 = (x! - 40)2/16 + (x2 - 40)2/4, e6 = (Xl - 40)2 + (x2 - 40)2, 

hx = (x3 - 15)/10, / ! 2 = ( 2 5 - x 3 ) / 1 0 . 

7\ = {(x!,x2, x3) : e\ < 1 and x3 e [25, 30]}, 

T2 = {(x!,x2, x3) : e2 > 1 and x3 e [25, 30]}, 

r 3 = {(x!,x2, x3) : h\e\ + h2e3 < 1 and x3 e [15, 25)}, 

TA = {(xi,x2, x3) : h\e2 + h2e4 > 1 and X 3 G [ 1 5 , 2 5 ) } , 

Ts = {(x l7x2, x3) : h\e\ + h2es < 1 and x 3 e[15 ,25)} , 

76 = {(xi,x2, x3) : h\e2 + h2e^ > 1 and X 3 G [ 1 5 , 2 5 ) } , 



Fig. 4 Jump discontinuity set 
of/2 

Table 5 Performance of 
EDAS-3 on f2 

El 

0.1 

E2 

0.1 

E3 

0.5 

E4 

1.0 

£5 

10.0 

TNT 

10185592 

TNTJ 

2317886 

CPU (s) 

722.8 

r 1 0 : 

{(xi,X2, X3) : e3 < 1 and X3G[10, 15)}, 

{(x!,x2, x3) : e4 > 1 and X 3 G [ 1 0 , 15)}, 

{(x!,x2, x3) : es < 1 and X 3 G [ 1 0 , 15)}, 

{(xi,X2, X3) : ee > 1 and X3 € [10, 15)}. 

Define 

r ^ Q c r ^ i n 7-2,-), 

and 

f2(xUX2,X3) : 
1, if (xi, X2, X3) G r , 

2.5, if (xi, x2, x3) G i? — r , 

where fl = [0,50]3. 
Figure 4 shows the interface (FJ) of / 2 . The results obtained are reported in Table 5. 

Figure 5 shows a comparison between the slices of the cloud of points generated by EDAS-
3 and the intersections of the interface with planes perpendicular to the x3-axis. 

4.3 General Piecewise Constant Function with Disconnected Interface 

This experiment shows the capability of EDAS-3 for dealing with functions having inter­
faces with a complex topological structure. 

In this case R = [—10, 10]3. The equation of a torus with axis X3, inner radius r, and 

rf. Let r„ outer radius r0 is given by (r0 

(5 — Jx\ + x | ) 2 + x\. Define 

Xj -p X2) ~T~ x^ 5 and D(x\, x2, x3) 

/ 3 ( X ! , X 2 , X 3 ) : 

1, i f D < l , 

3, if D > 1 a n d D < 4 , 

6, if D > 4 and D < 9, 

10, if D > 9 a n d D < 16, 

25, otherwise. 



10 15 20 25 30 35 40 45 

1 

10 15 20 25 30 35 40 45 

1 

Fig. 5 (Color online) Performance of EDAS-3 on fx- The exact solutions corresponding to xj = (I + «)/2 
for each slice (/, u) are the continuous green lines: (a) slice (29.95, 30.05), (b) slice (26.95, 27.05), (c) slice 
(24.75,24.80) (the exact solution is the part of the green lines contained in the cloud of points), (d) slice 
(16.95,17.05), (e) slice (11.95,12.05), (f) slice (9.95, 10.05) 

Figure 6 shows the graph of / 3 . The results obtained with EDAS-3 are reported in Table 6. 

Figure 7 shows a comparison between the slices of the cloud of points generated by EDAS-3 

and the intersections of the interface with planes perpendicular to the x3-axis. 



Fig. 6 Function fj 
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Table 6 Performance of 
EDAS-3 on / 3 

El 

0.1 

E2 

0.1 

£ 3 

1.0 

£ 4 

2.0 

£5 

10.0 

TNT 

9455552 

TNJT 

4972752 

CPU (s) 

671.1 

4.4 Performance on Real 3D Images and Comparison with other Methods 

In this section we study the performance of EDAS-3 on 3D images. These images are dis­
crete functions given by 3D-arrays. They can be extended to piecewise constant functions. 
The interface of these extended functions consists of a set of planes. Therefore, Theorem 1 
can be applied to most tetrahedra in a partition. In the experiments we have used a 3D image 
obtained by linear interpolation (At + (1 — t)B) of two CT section images (A and B) of 
a real brain (Radiology, Uppsala University Hospital) [19]; see Fig. 8. Interpolation from 
serial cross sections is a customary practice when the sections are not closely spaced [16]. 
In this way the appearence of the embedded 3D object is recaptured. 

The test 3D image exhibits a complex structure containing several three dimensional ob­
jects. In complex problems, it may be difficult to use deformable model algorithms. There­
fore, we have compared EDAS-3 with 3D difference filters (Sobel, Prewitt) which are suit­
able for arbitrary (unstructured) images. In the experiments with the 3D-Sobel method, the 
following mask to obtain the partial derivative of the image intensity with respect to the 
variable x\, was adopted: 

MX(:,:,l) = [-20 2; - 3 0 3 ; - 2 0 2 ] , 

AfX(:,:,2) = [-3 0 3; - 6 0 6; - 3 0 3], 

AfX(:,:,3) = [-2 0 2; - 3 0 3 ; - 2 0 2 ] . 

The corresponding mask used for the 3D-Prewitt method is: 

MX(:,:, 1) = [—1 0 1; - 1 0 1 ; - 1 0 1 ] , 

MX(:, : ,2) = [ - 1 0 1; - 1 0 1 ; - 1 0 1 ] , 

MX(:, : ,3) = [ - 1 0 1; - 1 0 1 ; - 1 0 1 ] . 



(a) (b) 

Fig. 7 Performance of EDAS-3 on fj. The exact solutions corresponding to xj = (I + «)/2 for each slice 
(/,«> are the continuous green lines: (a) slice (—0.05,0.05), (b) slice (1.45, 1.55), (c) slice (1.95,2.05), 
(d) slice (3.45,3.55) 

We have used the MATLAB notation for matrices. The masks for the derivatives with 
respect to x2 and x3 can be obtained from the above ones [37, 39]. 

From each original 2D-image (A and B) of size 512x512 we have obtained two images 
of size 256 x 256 and 128 x 128 using the function imresize of MATLAB. The x3 axis has 
been divided into h intervals. The value of the image on the x3-interval [k, k + 1], k = 
0 , . . . , h — 1 has been (1 — (k/(h — 1))A + (k/(h — Y))B. In this way we have generated 3D 
images with different resolution. 

3D-Sobel and 3D-Prewitt algorithms have been programmed in MATLAB and their re­
sults are reported in Tables 7 and 8 respectively. Figure 9 shows the performance of these 
algorithms. 

The results obtained by EDAS-3 are reported in Table 9. Figures 10(a) and 10(b) show 
its performance on the 3D image of size 5 1 2 x 5 1 2 x 2 1 . 

We have applied EDAS-2 to the 2D images shown in Figs. 8(c) and 8(d). The results are 
reported in Table 10. Figures 10(c) and 10(d) show its performance on these images. 

Since difference filters need to consider all the voxels, their time behavior is 0(nmh). 
This fact is confirmed by the experimental results. Therefore, difference filters are not suit­
able for high resolution images. 

From the results obtained on 3D images of size n x m x h, we observe that EDAS-3 
shows a time behavior compatible with 0((n + m + h)a) (a < 1). In this case we have 



(a) (b) 

Fig. 8 3D image of size 512 x512 x 21 obtained by linear interpolation of two CT sections of a real brain. 
(a) A (real image), (b) B (real image), (c) Interpolated image (t = 0.9), (d) Interpolated image (t = 0.5) 

Table 7 Performance of 
3D-Sobel on 3D images with 
different resolution 

Table 8 Performance of 
3D-Prewitt on 3D images with 

different resolution 

Size (Voxels) 

128 x 128 x 6 

256 x 256 x 11 

512 x 512 x 2 1 

Size (Voxels) 

128 x 128 x 6 

256 x 256 x 11 

512 x 512 x 2 1 

Threshold 

1000 

1000 

1000 

Threshold 

400 

400 

400 

CPU (s) 

2.1 

20.2 

186.2 

CPU (s) 

2.2 

20.3 

186.3 



Table 9 Performance of EDAS-3 on 3D images with different resolution 

Size (Voxels) 

128 x 128 x 6 

256 x 256 x 11 

512 x 512 x 2 1 

El 

0.1 

0.1 

0.1 

E2 

0.5 

1 

2 

E3 

55 

45 

30 

E4 

32 

32 

32 

E5 

10 

10 

10 

TNT 

18992772 

24746155 

25235117 

TNJT 

3569601 

4835039 

6763826 

CPU (s) 

3939.3 

7349.6 

14081.3 

(a) (b) 

100 200 300 400 500 100 200 300 400 500 

(c) (d) 

100 200 300 400 500 100 200 300 400 500 

Fig. 9 Performance of 3D-Sobel and 3D-Prewitt methods on the image of size 512 x 512 x 21: (a) Sobel 
(t = 0.9), (b) Sobel (t = 0.5), (c) Prewitt (t = 0.9), (d) Prewitt (t = 0.5) 

considered the relative error (E2/(n + m + h)) constant, but this suffices to get better results 
as the resolution of the image increases, for example, compare Fig. 11 obtained from the 
image of size 128 x 128 x 6 with Fig. 10(b). EDAS-3 can handle large size data sets. In 
fact, the examples studied in other sections of this paper have infinite resolution. 

EDAS-3 is slow even with moderate sized images. This feature is shared with deformable 
model algorithms. For example, in the case of active volume methods, thousands of CPU 



Table 10 Performance of EDAS-2 on images of size 512 x 512 

Image 

0.9 A + 0.1 B 

0.5 A + 0.5 B 

El 

0.1 

0.1 

E2 

2 

2 

E3 

36 

36 

E4 

10 

10 

E5 

10 

10 

TNT 

102587 

102773 

TNJT 

24558 

25399 

CPU (s) 

12.2 

12.3 

(a) (b) 

(c) (d) 

100 200 300 400 500 100 200 300 400 500 

Fig. 10 Performance of EDAS-3 on the image of size 512 x 512 x 21: (a) slice (2.3,2.7), (b) slice 
(10.3, 10.7). Performance of EDAS-2 on 2D images of size 512 x 512: (c) t = 0.9, (d) t = 0.5 

seconds have been reported [32]. The major reason behind this is the different output of 
the algorithms. Difference filters provide a point based representation of the discontinuity 
set of the images. This representation is difficult to visualize and manipulate. It requires 
algorithms to reconstruct the 3D bodies contained in an image. On the contrary, EDAS-3 
and some deformable models [7, 32] provide triangulated descriptions of the discontinuity 
sets that can be used directly in 3D visualization, virtual reality models [40], etc. 



Fig. 11 Performance of EDAS-3 
on the 128 x 128 x 6 image: 
slice (2.95, 3.05) 

Fig. 12 Function / 4 (x \, x2, 0) 

The technique of finding edges in different 2D sections of a 3D image is fast and efficient. 
The results for EDAS-3 are reported in Table 10; see Figs. 10(c) and 10(d). It can be used 
for medical diagnosis, but if we are interested in a description of the 3D structure we need 
to use additional reconstruction algorithms. 

4.5 General Piecewise Continuous Function 

In the case of general piecewise continuous functions which are not piecewise constant, 
Theorem 1 is not directly applicable. In spite of this fact, EDAS-3 can be applied to solve 
some of these problems as we see below. Define 

f4(xi,x2,x3) = 

2 + 0.1 (JCI + x2 + x3) + 3sin(4xi), if (xi,x2 ,x3) e R — B4, 

1 4 + 0.1(JCI + x2) + 2cos(3x2), if (JCI,JC2,JC3) e B4 - E, 

27, if (xi,X2,xi) e E, 

where R = [—10, 10]3, B4 = {(xi,x2,X3) : x\ + x\ + x\ < 25}, and E = {(xi,x2,X3) : 
x\/9 + xf/4 + x | / 4 < 1}. Figure 12 shows the intersection of the graph of f4 with the 
plane x3 = 0. 

The results obtained are reported in Table 11. Figure 13 shows a comparison between the 
slices of the cloud of points generated by EDAS-3 and the intersections of the interface with 
planes perpendicular to the X3-axis. 



Table 11 Performance of 
EDAS-3 on f4 

El 

0.1 

E2 

0.1 

E3 

5.0 

E4 

1.0 

£5 

2.0 

TNT 

9474706 

TNJT 

1073228 
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Fig. 13 (Color online) 
Performance of EDAS-3 on f4: 
Slice (-0.05, 0.05), exact 
solution for X3 = 0 (light blue 
line); slice (1.45, 1.55), exact 
solution for X3 = 1.5 (green 
line); slice (2.95, 3.05), exact 
solution for X3 = 3 (yellow line) 

5 Concluding Remarks 

In this paper we study the case d = 3 of the algorithm EDAS-<i. EDAS-3 can approximate 
the jump discontinuity set of functions defined almost everywhere on convex subsets of 
R3. The method is based on adaptive splitting of the domain of the function guided by 
the value of an average integral. The numerical computation of these integrals introduces 
an "implicit smoothing" that allows a fast convergence away from the jump points. The 
algorithm needs to specify five parameters which have an intuitive meaning. They can be 
easily fixed in most problems. While difference filters and deformable models approximate 
the jump discontinuity set by a set of points and a set of surfaces respectively, EDAS-3 
provides a triangulated 3D set that contains the jump discontinuity set. The accuracy of 
this approximation is fixed beforehand. This is a basic difference with other methods. The 
output of EDAS-3 does not require reconstruction algorithms and can be used directly as a 
3D model. 

EDAS-3 allows to handle automatically interfaces with complex topological structure. 
Initial conditions are not necessary. Since it is not a variational approach, it does not present 
the problem of stopping at local minima of an energy. In the case of difficult problems 
we can partition the domain and apply EDAS-3 independently to each subdomain (parallel 
processing). 

We have studied from a theoretical and computational point of view the case d = 3. 
From the experiments, we can draw the following conclusions about EDAS-3: 

It provides a precise determination of the jump points. 
The resulting piecewise affine function L does not show oscillatory behavior near the 

jump points. This makes possible to obtain accurate values of the magnitude of the jumps. 
As a consequence, we can obtain stratified edges (Tf, Tfu) in a straightforward manner. In 
the case of images, this fact is important because stratified edges correspond to "individual 
objects" in a scene. 

It is robust against continuous and discontinuous random perturbations. 



It gives good results for general piecewise continuous functions (not necessarily piece-
wise constant). 

The CPU-time of EDAS-3 depends on the complexity of the 3D image and on the pre­
cision required. In the experiments performed on real images the order of magnitude of the 
CPU time has been similar to that reported by active volume algorithms. 

Some caution is necessary when we apply EDAS-3: 
The approximate method of evaluation of integrals can lead to the oversight of some jump 

points. This can be avoided by decreasing the exploration parameter £ 4 or by modifying the 
adaptive procedure to compute integrals. 

If the interface presents acute dihedral angles, Theorem 1 may not be applicable to tetra-
hedra intersecting the edges of such angles. This part of FJ might be erroneously approxi­
mated. 

To sum up, we can state that EDAS-3 is a general procedure to approximate the jump 
discontinuity set of functions defined on R3. EDAS-3 can be applied to 3D medical im­
ages (MRI, CT, etc). This method is specially suitable for dealing with high-resolution 3D 
images. 

Acknowledgement We would like to thank the anonymous reviewers for their careful reading of our 
manuscript and the insightful comments they provided. 

Appendix 

In this section we give a proof of Theorem 1. Let a = (a\, a2,... ad), where at e Z + U 
{0}, i = l,...,d. Define 

hf = \ dxi I dx2...l f(xux2,...,xd)dxd, 
Jo Jo Jo 

xa = x = (xi, ...,xd)^ x"1 . ..xa/. 

Lemma 1 ([17]) 

Idx
a = al\...ad\/(d+\a\)\, 

where \a\ = a,\ + • • • + ad. 

We need some results about range computation of polynomials using the Bernstein form. 
Define 

i= (iu...,id), l=(li,...,ld), x=(xu...,xd), x= (xv ...,Xd), 

d 1 h Id / , \ d /l \ 

^ n ^ £-£-£. (!)=n(H 
li=l i=0 ii=0 id=0 V ' fi=l V M / 

A (i-variate polynomial of degree 1 = (l\, l2,..., ld) can be written as p(x) = ^i=o f lix'' 
where x = (x\, x2,..., xd). 

Consider the <i-box X = [x_x, x\\ x • • • x [xd, xd\. A <i-variate polynomial p of degree 

1 can be represented over X as p(x) = J2i=o^iBi(ii), where Bj(x) = (j)x'(l — x) l_1. The 



so-called Bernstein coefficients are given by the following expression (see [34]) 

j=0 \j) k=j V J / 

Lemma 2 (Range enclosing property, [34]) The range of p over X is contained within the 
interval spanned by the minimum and maximum Bernstein coefficients, that is 

min{£>i} < p(x) < max{£>j}, xeX. 

i i 

Theorem 1 Let h : R3 -> R be the function defined by 

h(x) = J H{ax\ + bx2 + cx3 + d), 

where a, b, c, d, and J are real numbers such that either a or b or c are distinct from zero 
and J > 0. Define r = {x = (x\, x2, x3) e R3 : ax\ + bx2 + cx3 + d = 0} and let T be an 
arbitrary tetrahedron in R3 such that r n T ^ 0. Then 

1J fT\h(x)-LTh(x)\dx 3 / 

32 ~ vCT) ~T' 

where \(T) is the volume ofT. 

Proof Let A(a\, a%, a^), B(b\, b%, b{), C(c\, c%, c3), and D(d\, d.%, di) be the vertices of the 
tetrahedron T. Consider the change of variables x = x (y) defined by 

• a\ c\ — a\ d\ 

a2 c2- a2 d2 

a3 c3 — a3 d-i 

Let 

( b\ — a\ c\— a\ d\ — a \ 
b2 - a2 c2-a2 d2-a2\ . 
fc3 — a3 c3 — a3 d-i — a^l 

We have T = r (A) , where A is the tetrahedron in the space (yi, y2, j 3 ) with vertices 
Pi(0, 0, 0), P2( l , 0,0), P3(0, 1,0) and P4(0,0, 1). 

If we use the change of variables formula for multiple integrals and consider that v(T) = 
\det(MT)\/6 

fT\h(x)-LTh(x)\dx fA\h(x(y))-LTh(x(y))\\det(Mt)\dy 
AIT\II) = = 

\(T) \(T) 

= 6 f \h(x(j))-LTh(x(j))\dy. (2) 
J A 

There are three possible cases: 

(i) h is equal to / at two vertices of T and is equal to zero at the other two vertices, 
(ii) h is equal to / at one vertex of T and is equal to zero at the other three vertices, 

(iii) h is equal to / at three vertices of T and is equal to zero at the other vertex. 



Fig. 14 Illustration for the proof 
of Theorem 

(i) Assume that h is equal to J at B and C and is equal to zero at A and D. To obtain 
LTh(r(y)) it suffices to find the affine interpolant LA such that LA(P2) = LA(P^) = J and 
LA(-Pi) = LA (P4) = 0. It is clear that LA(y) = J (yi + y2)- Therefore 

LTh(r(y)) = LA(y) = J(yi + y2), 

and (2) can be written as 

i AIT(h) = 6 / \h(r(y))-J(yi + y2)\dy. 
J A 

Consider a plane intersecting A such as that shown in Fig. 14. The intersection is a 
quadrilateral with vertices 5\ = (a, 0, 0), S2 = (fi, 0, 1 — p), S^ = (0, y, 1 — y), and Sj = 
(0,5,0). Define 

r 1 = <p 1 , 5 2 , p 4 , ^> , 

r 2 = (P i ,5 i ,5 2 , 5 3 ) , 

r 3 = <Pi,Si,S3,S4>, 

ei^rjurzurs, 

Then 

i AIT(h) = 6 \h(r(y))-LTh(r(y))\dy 
J A 

= 4f \0-J(ji+y2)\dy+ [ \J-J(yi+y2)\dy 

= 6J( f (2yi + 2y2 - l)dy + f (1 - yi - y2)dy 

\J Ql J A 



By Lemma 1, 

[ (l-yi-y2)dy=l/12. 
J A 

Then we have 

AIT(h) = 6 / ( f (2yi + 2y2 - l)dy + 1/12) = 6J(h + I2 + I3 + 1/12), 

where /, = fT (2x\ + 2x2 — Y)dx, i = 1,2,3. The evaluation of the integrals /, can be made 
by means of suitable changes of variables. 

The application t\ defined by 

lx\ ( p 0 0\ AA 
U = ° y 0 \\y2\ 
\x3J \i-p \-Y 1/ W 

is such that T\ = t\ (A). Using X\, we have 

h= I (2xi + 2x2 - l)dx = I (2pyi + 2Yy2 - l)Pydy. 
JTi J A 

By Lemma 1, 

h = Py(P + y-2)/12. 

The application x2 defined by 

A A /a 0 p \ A A 
U = ° K 0 U 
\x3J \0 \-Y 1-pJ W 

is such that T2 = r2(A). Using x2, we have 

h= (2xi + 2x2 - \)dx = / (2aji + 2y j 2 + 2/3y3 - l)ay(l - p)dy. 
JT2 J A 

By Lemma 1, 

12 = a(l-p)y(.a + p + y-2)/l2. 

The application x3 defined by 

A A /a 0 0 \ A A 
x2 = 0 5 K ]\y2] 

\x3J \0 0 1 - y) \y3) 

is such that T3 = r3(A). Using x3, we have 

I3 = I (2xi + 2x2 — l)dx = I (2ayi + 2Sy2 + 2yy3 — l ) a ( l — y)Sdy. 
JT3 J A 

By Lemma 1, 

13 = a(l-y)S(a + y + S-2)/12. 



Define 

K = 12(/i + h + h) 

= PY(P + Y - 2) + Qf(l - P)y(a + p + y-2) +a(l- y)8(a + y + S-2). 

Then AIT{h) = J(K + l ) /2. 
Let z = (a, p, y, S). It is necessary to determine lower and upper bounds of K(z) on 

R = [0, l ] 4 . In order to achieve tight bounds we can partition R into n 4-intervals, that is 
R = |J"= 1 Rt with fl, fl Rj = 0, i ^ ;', and consider that 

LBK{z) = min(LBK(z)), (3) 
Z<ER l<i<n ZG^J 

UBK(z)=max(UBK(z)), (4) 

where LS^T denotes a lower bound of K and UBK denotes an upper bound of K. We have 
divided each side of R into 16 equal parts obtaining a partition of R into 65536 identical 
4-intervals. By applying Lemma 2 to each Rt, (3), and (4), we have 

-0.375488 < ^ ( z ) < 0 , zeR. 

To appreciate the tightness of these bounds observe that K attains a local minimum at z* = 
(1/2, 1/2, 1/2, 1/2) with K(z*) = - 3 / 8 = -0.375. On the other hand, K{\, 1, 1, 1) = 0. 

Consequently, we have 

0.312256/ <AIT(h)< J/2. (5) 

(ii) Assume that h is equal to J at B and is equal to zero at A, C and D. To obtain 
Lr/z(T(y)) it suffices to find the affine interpolant LA such that L A ( P 2 ) = J and LA(-PI) = 
LA(Pi) = LAC-P/O = 0. It is clear that LA(y) = Jy\. Therefore 

LTh(r(y)) = LA(y) = Jyu 

and (2) can be written as 

AIT(h) = 6 f \h(r(y))-Jyi\dy. 
J A 

Consider a plane intersecting A such as that shown in Fig. 15. The intersection is a 
triangle with vertices 5\ = (a, 0, 0), S2 = (P, 0, 1 — p), and S^ = (y, 1 — y, 0). Define 

T1 = {P2,S1,S2,S3), 

Qi = A-T!. 

Then we have 

AIT(h) = 6 f \h(r(j))-LTh(r(j))\dy 
JA 

= 6(j\J-Jyi\dy + j \0-Jyi\dy) 

= 6j(j (l-2yi)dy + j yidy\ 



Fig. 15 Illustration for the proof 
of Theorem 

By Lemma 1, 

Then we have 

L yidy=l/2A. 

AIT(h) = 6J(h + 1/24), 

where I\ = fT (1 — 2xi)dx. 
The application r4 defined by 

1—a y — a j3 — a 
0 \ - y 0 
0 0 I- p 

is such that T\ = r4(A). Using r4, we have 

h- L L (1 - 2Xl)dx = / (1 - 2((1 - a)yi + (y - a)y2 + (p - a)y3 + a))dy. 

Let u = (1 - of)(l - /3)(1 - y), by Lemma 1, h = u{\ - a - fi - y)/12. Let K = \2lx = 
u(\ - a - ft - y), then we have AIT(h) = J(K + 1/2)/2. 

Let z = (a, fi, y) and R = [0, l ] 3 . Using standard analytical techniques we find that K(z) 
has only one local minimum in R that is attained at z* = (1/2, 1/2, 1/2). It is easy to check 
(studying the values of K(z) at the boundary of R) that the global minimum of K over R 
is K(z*) = —1/16 = —0.0625. Moreover, applying the Bernstein procedure with a partition 
of R into 2097152 identical cubes, we have 

-0.062504 < K{z) < 1, zeR. 

The upper bound is sharp because ^"(0, 0, 0) = 1. 
Consequently, we have 

7J/32<AIT(h)<3J/4. (6) 



(iii) Assume that h is equal to zero at B and is equal to 7 at A, C and D. To obtain 

LTh(r(y)) it suffices to find the affine interpolant LA such that LA(P2) = 0 and LA(-Pi) = 

LA(P3) = LA(P4) = 7. It is clear that LA(y) = 7(1 - >>,). Therefore, 

LTh(r(y)) = LA(y) = J(l-yi), 

and (2) can be written as 

AIT(h) = 6 f \h(r(j))-(l-Jyi)\dy. 
J A 

Consider a plane intersecting A such as that shown in Fig. 15. The intersection is a triangle 

whose vertices are those described in section (ii). 

Define 

T1 = {P2,S1,S2,S3), 

Qi = A-T!. 

Then we have 

AIT(h) = 6 [ \h(r(j))-LTh(r(j))\dy 
J A 

= 6(7 \0-J(l-yi)\dy + j \J-J(l-yi)\dy\ 

= 67(7 (l-2yi)dy + j yidy\ 

Therefore, this case transforms into case (ii). The bounds of AIT(h) are given by (6). Since 

7/32 = 0.218750, (1) follows from inequalities (5) and (6). • 
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