Skip to main content
Log in

Hypothesis Testing for Fourier Based Edge Detection Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Edge detection is an essential task in image processing. In some applications, such as Magnetic Resonance Imaging, the information about an image is available only through its frequency (Fourier) data. In this case, edge detection is particularly challenging, as it requires extracting local information from global data. The problem is exacerbated when the data are noisy. This paper proposes a new edge detection algorithm which combines the concentration edge detection method (Gelb and Tadmor in Appl. Comput. Harmon. Anal. 7:101–135, 1999) with statistical hypothesis testing. The result is a method that achieves a high probability of detection while maintaining a low probability of false detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archibald, R., Gelb, A.: Reducing the effects of noise in image reconstruction. J. Sci. Comput. 17(1–4), 167–180 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Archibald, R., Gelb, A.: A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity. IEEE Trans. Med. Imaging 21(4), 305–319 (2002)

    Article  Google Scholar 

  3. Archibald, R., Gelb, A., Yoon, J.: Polynomial fitting for edge detection in irregularly sampled signals and images. SIAM J. Numer. Anal. 43(1), 259–279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  6. Engelberg, S., Tadmor, E.: Recovery of edges from spectral data with noise—a new perspective. SIAM J. Numer. Anal. 46(5), 2620–2635 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gelb, A., Cates, D.: Detection of edges in spectral data III—refinement of the concentration method. J. Sci. Comput. 36(1), 1–43 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gelb, A., Cates, D.: Segmentation of images from Fourier spectral data, communications in computational. Physics 5, 326–349 (2009)

    MathSciNet  Google Scholar 

  9. Gelb, A., Tadmor, E.: Detection of edges in spectral data. Appl. Comput. Harmon. Anal. 7, 101–135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gelb, A., Tadmor, E.: Detection of edges in spectral data II—nonlinear enhancement. SIAM J. Numer. Anal. 38(4), 1389–1408 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gelb, A., Tadmor, E.: Adaptive edge detectors for piecewise smooth dara based on the minmod limiter. J. Sci. Comput. 28(2–3), 279–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  13. Jung, J.-H., Gottlieb, S., Kim, S.O.: Iterative adaptive rbf methods for detection of edges in two dimensional functions. Appl. Numer. Math. 61, 77–91 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kay, S.M.: Fundamentals of Statistical Signal Processing—Detection Theory. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  15. Sobel, I.: An isotropic 3 image gradient operator. In: Freeman, H. (ed.) Machine Vision for Three-Dimensional Scenes. Academic Press, Boston (1990)

    Google Scholar 

  16. Tadmor, E.: Filters, mollifiers and the computation of the Gibbs phenomenon. Acta Numer. 16, 305–378 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tadmor, E., Zou, J.: Novel edge detection methods for incomplete and noisy spectral data. J. Fourier Anal. Appl. 14(5), 744–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Viswanathan, A., Cochran, D., Gelb, A., Cates, D.: Detection of signal discontinuities from noisy Fourier data. In: Signals, Systems and Computers, Forty-Second Asilomar Conference on Signals, Systems, and Computers, pp. 1705–1708 (2008)

    Google Scholar 

  19. Ziou, D., Tabbone, S.: Edge detection techniques—an overview. Pattern Recognit. Image Anal. 8(4), 537–559 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Petersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, A., Gelb, A. & Eubank, R. Hypothesis Testing for Fourier Based Edge Detection Methods. J Sci Comput 51, 608–630 (2012). https://doi.org/10.1007/s10915-011-9523-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9523-1

Keywords

Navigation