Skip to main content
Log in

Matrix Stability of Multiquadric Radial Basis Function Methods for Hyperbolic Equations with Uniform Centers

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The fully discretized multiquadric radial basis function methods for hyperbolic equations are considered. We use the matrix stability analysis for various methods, including the single and multi-domain method and the local radial basis function method, to find the stability condition. The CFL condition for each method is obtained numerically. It is explained that the obtained CFL condition is only a necessary condition. That is, the numerical solution may grow for a finite time. It is also explained that the boundary condition is crucial for stability; however, it may degrade accuracy if it is imposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernal, F., Kindelan, M.: An RBF meshless method for injection molding modelling. In: Meshfree Methods for Partial Differential Equations III. Lecture Notes in Computational Science and Engineering, vol. 57, pp. 41–56 (2007)

    Chapter  Google Scholar 

  2. Boyd, J.P., Wang, L.: Truncated Gaussian RBF differences are always inferior to finite differences of the same stencil width. Commun. Comput. Phys. 5, 42–60 (2009)

    MathSciNet  Google Scholar 

  3. Boyd, J.P., Wang, L.: An analytic approximation to the cardinal functions of Gaussian radial basis functions on an infinite lattice. Appl. Math. Comput. 215, 2215–2223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  5. Driscoll, T.A., Heryudono, A.R.H.: Adaptive residual subsampling methods for radial basis function interpolation and collocation problems. Comput. Math. Appl. 53, 927–939 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Flyer, N., Wright, G.B.: A radial basis function method for the shallow water equations on a sphere. Proc. R. Soc. A 465, 1949–1976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fornberg, B., Flyer, N.: The Gibbs phenomenon for radial basis functions. In: Jerri, A. (ed.) The Gibbs Phenomenon in Various Representations and Applications, pp. 201–224. Sampling, Potsdam (2008)

    Google Scholar 

  8. Fornberg, B., Dirscoll, T., Wright, G., Charles, R.: Observations on the behavior of radial basis function approximations near boundaries. Comput. Math. Appl. 43, 473–490 (2003)

    Article  Google Scholar 

  9. Fasshauer, G.E.: RBF collocation methods as pseudospectral methods. In: Kassab, A., Brebbia, C.A., Divo, E., Poljak, D. (eds.) Boundary Elements XXVII, pp. 47–56. WIT Press, Southampton (2005)

    Google Scholar 

  10. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Appl. Math. 54, 379–398 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fornberg, B., Driscoll, T.A., Wright, G., Charles, R.: Observations on the behavior of radial basis function approximations near boundaries. Comput. Math. Appl. 43, 473 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley Interscience, New York (1995)

    MATH  Google Scholar 

  13. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge UP, Cambridge (1990)

    MATH  Google Scholar 

  14. Hon, Y.C., Kansa, E.J.: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput. Math. Appl. 39, 123–137 (1998)

    MathSciNet  Google Scholar 

  15. Jung, J.-H.: A note on the Gibbs phenomenon with multiquadric radial basis functions. Appl. Numer. Math. 57, 213–229 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kansa, E.J.: Muliquadrics scattered data approximation scheme with applications to computational fluid dynamics: II. Solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lai, S.J., Wang, B.Z., Duan, Y.: Meshless radial basis function method for transient electromagnetic computations. IEEE Trans. Magn. 44, 2288–2295 (2008)

    Article  Google Scholar 

  18. Platte, R.B., Driscoll, T.A.: Polynomials and potential theory for Gaussian radial basis function interpolation. SIAM J. Numer. Anal. 43, 750–766 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Platte, R.B., Driscoll, T.A.: Eigenvalue stability of radial basis function discretizations for time-dependent problems. Comput. Math. Appl. 51, 1251–1268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Platte, R.B., Trefethen, L.N., Kuijlaars, A.B.J.: Impossibility of fast stable approximation of analytic functions from equispaced samples. SIAM Rev. 53(2), 308–318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sarra, S.A.: Adaptive radial basis function methods for time dependent partial differential equations. Appl. Numer. Math. 54, 79–94 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sarra, S.A.: A numerical study of the accuracy and stability of symmetric and asymmetric RBF collocation methods for hyperbolic PDEs. Numer. Methods Partial Differ. Equ. 24, 670–686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251–264 (1995)

    Article  MathSciNet  Google Scholar 

  24. Shokri, A., Dehghan, M.: A Not-a-Knot meshless method using radial basis functions and predictor corrector scheme to the numerical solution of improved Boussinesq equation. Comput. Phys. Commun. 181, 1990–2000 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  26. Wright, G.B., Flyer, N., Yuen, D.A.: A hybrid radial basis function—pseudospectral method for thermal convection in a 3D spherical shell. Geochem. Geophys. Geosyst. 11, Q07003 (2010)

    Article  Google Scholar 

  27. Zhou, X., Hon, Y.C., Li, J.: Overlapping domain decomposition method by radial basis functions. Appl. Numer. Math. 44, 241–255 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zingg, D.W.: Aspects of linear stability analysis for higher-order finite-difference methods. AIAA Paper 97-1939 (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hun Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Jung, JH. Matrix Stability of Multiquadric Radial Basis Function Methods for Hyperbolic Equations with Uniform Centers. J Sci Comput 51, 683–702 (2012). https://doi.org/10.1007/s10915-011-9526-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9526-y

Keywords

Navigation