Skip to main content
Log in

A High Accuracy Post-processing Algorithm for the Eigenvalues of Elliptic Operators

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In a very recent paper (Hu et al., The lower bounds for eigenvalues of elliptic operators by nonconforming finite element methods, Preprint, 2010), we prove that the eigenvalues by the nonconforming finite element methods are smaller than the exact ones for the elliptic operators. It is well-known that the conforming finite element methods produce the eigenvalues above to the exact ones. In this paper, we combine these two aspects and derive a new post-processing algorithm to approximate the eigenvalues of elliptic operators. We implement this algorithm and find that it actually yields very high accuracy approximation on very coarser mesh. The numerical results demonstrate that the high accuracy herein is of two fold: the much higher accuracy approximation on the very coarser mesh and the much higher convergence rate than a single lower/upper bound approximation. Moreover, we propose some acceleration technique for the algorithm of the discrete eigenvalue problem based on the solution of the discrete eigenvalue problem which yields the upper bound of the eigenvalue. With this acceleration technique we only need several iterations (two iterations in our example) to find the numerical solution of the discrete eigenvalue problem which produces the lower bound of the eigenvalue. Therefore we only need to solve essentially one discrete eigenvalue problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armentano, M.G., Duran, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal. 17, 92–101 (2004)

    MathSciNet  Google Scholar 

  2. Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  3. Betcke, T., Trefethen, L.N.: Reviving the method of particular solutions. SIAM Rev. 47, 469–491 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blum, H., Rannacher, R.: On mixed finite element methods in plate bending analysis, Part 1: The first Herrmann scheme. Comput. Mech. 6, 221–236 (1990)

    Article  MATH  Google Scholar 

  6. Bjørstad, P.E., Tjøstheim, B.P.: High precision solutions of two fourth order eigenvalue problems. Computing 63, 97–107 (1999)

    Article  MathSciNet  Google Scholar 

  7. Cai, Z.Q., Kim, S., Kim, S., Kong, S.: A finite element method using singular functions for Poisson equations: Mixed boundary conditions. Comput. Methods Appl. Mech. Eng. 195, 2635–2648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carstensen, C., Gedicke, J., Livshits, I.: A posteriori error analysis for eigenvalue problems. Proc. Appl. Math. Mech. 7, 1026203–1026204 (2007)

    Article  Google Scholar 

  9. Carstensen, C., Gedicke, J.: An oscillation-free adaptive fem for symmetric eigenvalue problems. Preprint (2008)

  10. Chatelin, F.: Spectral Approximations of Linear Operators. Academic Press, New York (1983)

    Google Scholar 

  11. Dahmen, W., Rohwedder, T., Schneider, R., Zeiser, A.: Adaptive eigenvalue computation for elliptic operators. In: Gürlebeck, K., Könke, C. (eds.) 18th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, Weimar, Germany, 07–09 July, 2009

    Google Scholar 

  12. Dai, X.Y., Xu, J.C., Zhou, A.H.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110, 313–355 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Durán, R., Padra, C., Rodrgíuez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 8, 1219–1229 (2003)

    Article  Google Scholar 

  14. Frederick, B., Douglas, C.: Handbook of Thin Plate Buckling and Postbuckling. Chapman & Hall/CRC, London (2001)

    MATH  Google Scholar 

  15. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, London (1985)

    MATH  Google Scholar 

  16. Heuveline, V., Rannacher, R.: A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15, 107–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, J., Huang, Y.Q., Lin, Q.: The lower bounds for eigenvalues of elliptic operators by nonconforming finite element methods. Preprint (2010)

  18. Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint eigenvalue problems. SIAM J. Numer. Anal. 38, 562–580 (2000)

    Article  MathSciNet  Google Scholar 

  19. Li, Y.A.: A posteriori error analysis of nonconforming methods for the eigenvalue problem. J. Syst. Sci. Complex. 22, 495–502 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, Q., Lin, J.F.: Finite Element Methods: Accuracy and Improvement. Science, Beijing (2006)

    Google Scholar 

  21. Lin, Q., Yan, N.N.: Construction and Analysis of Effective FEM. Habei Univ. Press, Habei (1996)

    Google Scholar 

  22. Lin, Q., Xie, H.H., Luo, F.S., Li, Y.: Stokes eigenvalue approximations from below with nonconforming finite element methods. Math. Pract. Theory 40, 157–168 (2010)

    MathSciNet  Google Scholar 

  23. Liu, H.P., Yan, N.N.: Four finite element solutions and comparison of problem for the Poisson equation eigenvalue. Chin. J. Numer. Methods Comput. Appl. 2, 81–91 (2005)

    MathSciNet  Google Scholar 

  24. Moler, C.B.: Numerical Computing with MATLAB. SIAM, Philadelphia (2004). The chapter “Partial Differential Equations”

    MATH  Google Scholar 

  25. Morley, L.S.D.: The triangular equilibrium problem in the solution for plate bending problems. Aeronaut. Q. 19, 149–169 (1968)

    Google Scholar 

  26. Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 23–42 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shi, Z.C.: Error analysis of Morley element. Math. Numer. Sin. 12, 113–118 (1990)

    MATH  Google Scholar 

  28. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  29. Verfürth, R.: A posteriori error estimates for nonlinear problems. Math. Comput. 62, 445–475 (1989)

    Google Scholar 

  30. Wang, M., Shi, Z.C., Xu, J.C.: A new class of Zienkiewicz-type non-conforming element in any dimensions. Numer. Math. 106, 335–347 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, Y.D.: A posteriori error estimates in Adini finite element for eigenvalue problems. J. Comput. Math. 18, 413–418 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Yang, Y.D., Zhang, Z.M., Lin, F.B.: Eigenvalue approximation from below using non-conforming finite elements. Sci. China Math. 53, 137–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Z.M.: Polynomial preserving recovery for meshes from Delaunay triangulation or with high aspect ratio. Numer. Methods Partial Differ. Equ. 24(3), 960–971 (2008)

    Article  MATH  Google Scholar 

  34. Zhang, Z.M., Yang, Y.D., Chen, Z.: Eigenvalue approximation from below by Wilson’s element. Chin. J. Numer. Math. Appl. 29, 81–84 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Huang, Y. & Shen, Q. A High Accuracy Post-processing Algorithm for the Eigenvalues of Elliptic Operators. J Sci Comput 52, 426–445 (2012). https://doi.org/10.1007/s10915-011-9552-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9552-9

Keywords

Navigation