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Abstract

A two-grid scheme based on mixed finite-element approximations to

the incompressible Navier-Stokes equations is introduced and analyzed.

In the first level the standard mixed finite-element approximation over

a coarse mesh is computed. In the second level the approximation is

postprocessed by solving a discrete Oseen-type problem on a finer mesh.

The two-level method is optimal in the sense that, when a suitable value

of the coarse mesh diameter is chosen, it has the rate of convergence of the

standard mixed finite-element method over the fine mesh. Alternatively,

it can be seen as a postprocessed method in which the rate of convergence

is increased by one unit with respect to the coarse mesh. The analysis

takes into account the loss of regularity at initial time of the solution of the

Navier-Stokes equations in absence of nonlocal compatibility conditions.

Some numerical experiments are shown.

1 Introduction

We consider the incompressible Navier–Stokes equations

ut − ν∆u+ (u · ∇)u +∇p = f, (1)

div(u) = 0,

in a bounded domain Ω ⊂ R
d (d = 2, 3) with a smooth boundary subject to

homogeneous Dirichlet boundary conditions u = 0 on ∂Ω. In (1), u is the
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velocity field, p the pressure, ν > 0 the diffusion coefficient and f a given force
field.

In this paper we study the following two-grid mixed finite-element method
for the spatial discretization of the above equations. First, for the solution (u, p)
of the fully nonlinear Navier-Stokes equations (1) corresponding to a given initial
condition

u(·, 0) = u0, (2)

the mixed finite-element approximation (uH , pH) over a coarse mesh of diameter
H is computed. Then, for any time t > 0, the postprocessed approximation
(ũh, p̃h) is obtained as the mixed finite-element approximation over a finer mesh
(h < H) to the following steady Oseen-type problem:

−ν∆ũ+ (uH(t) · ∇)ũ+∇p̃ = f − d
dtuH(t)

div(ũ) = 0

}

in Ω,

ũ = 0, on ∂Ω.

(3)

In this paper we prove that, in terms of the fine mesh diameter h, this two-
grid technique is of optimal order in the sense that, for appropriate choices
of the coarse mesh diameter H , the method has the same rate of convergence
of standard mixed finite element approximations in the fine mesh. On the
other hand, for a suitable value of the discretization parameter h, the rate of
convergence of the postprocessed approximation in terms of H increases by
one unit the rate of convergence of the coarse standard approximation. The
improvement in precision is achieved in both the H1 norm for the velocity
and the L2 norm for the pressure in the case of linear, quadratic and cubic
elements. For other than linear elements the rate of convergence in the L2 norm
of the velocity is also increased by one unit. We remark that time evolution is
performed only at the coarse mesh whereas at the fine grid the time appears
only as a parameter (see equation (3)), thus the name of static two-grid method.

Two-grid or two-level methods are a well established technique for nonlinear
steady problems, see [34]. In [25], [26] several two-level methods are considered
to approximate the steady Navier-Stokes equations. They require solving a
nonlinear system over a coarse mesh and, depending on the algorithm chosen,
one Stokes problem, one linear Oseen problem or one Newton step over the fine
mesh. The corresponding algorithms obtain the optimal rate of convergence in
the fine mesh for appropriate choices of the coarse mesh diameter H .

In the case of nonlinear evolutionary equations, two-grid techniques have
been proposed and studied in [1], [22], [24], [14]. In these methods, as opposed
to the method studied in the present paper, time evolution is also performed over
the fine mesh. The advantage of the method studied in the present paper is that
since the time integration is only carried out on the coarse mesh, computations
on the fine grid can be done at selected target time levels where an improved
approximation is desired, with the corresponding reduction of computing time,
specially if these target time levels are sufficiently spaced in time. For this
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reason, although some of the two-grid methods that incorporate the evolution
in time of the fine mesh approximation are more accurate, the method we present
can still be more efficient in terms of computational effort for a given error level.

Two-grid techniques that integrate in time only on the coarse level have
previously been developed in [16], [17] (see also [27]) for spectral methods, and
later extended to mixed finite-element formulations in [3], [4], [10]. In all these
works the two grid method is referred to as postprocessed Galerkin method,
and, instead of (3), the approximation (ũh, p̃h) is found as an approximation to
the following Stokes problem

−ν∆ũ+∇p̃ = f − d
dtuH(t)− (uH(t) · ∇)uH(t)

div(ũ) = 0

}

in Ω,

ũ = 0, on ∂Ω.

(4)

This two-grid method will be termed standard postprocessed method, to dif-
ferentiate it to that studied in the present paper, which will be termed new
postprocessed method. Both, the standard and the new postprocessed meth-
ods, have the same rate of convergence. However, as already noted in [12] for
nonlinear convection-diffusion problems, the new postprocessing technique pro-
duces more accurate approximations than the standard postprocessed method,
for moderate to small values of the diffusion parameter ν. This will also be the
case in the numerical experiments in the present paper for moderate values of
the Reynolds number.

In the present paper we take into account the loss of regularity suffered by
the solutions of the Navier-Stokes equations at the initial time in the absence
of nonlocal compatibility conditions. Thus, for the analysis, we do not assume
the solution u to have more than second-order spatial derivatives bounded in
L2 up to initial time t = 0, since demanding further regularity requires the data
to satisfy nonlocal compatibility conditions unlikely to be fulfilled in practical
situations [19], [20]. Due to the loss of regularity at t = 0, the best error bound
that we can obtain is O(H5| log(H)|). For this reason we do not analyze higher
than cubic finite elements. The same limit in the rate of convergence was found
in [20] for standard mixed finite-element approximations and in [10], [14] for
two-grid schemes.

In practice, any method to numerically solve evolutionary equations needs
of some time discretization procedure. For brevity reasons, we have preferred to
present the method in a semidiscrete manner without reference to any particular
time discretization. However, we emphasize that being static, the method we
present can be applied exactly in the same form, with any time discretization.
The analysis of fully discrete procedures can be developed along the same lines
that appear in [11], [13].

The rest of the paper is as follows. In Section 2 we introduce some prelim-
inaries and notation. In Section 3 we carry out the error analysis of the new
method. Finally, some numerical experiments are shown in the last section.
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2 Preliminaries and notations

We will assume that Ω is a bounded domain in R
d, d = 2, 3, of class Cm, for

m ≥ 2. When dealing with linear elements (r = 2 below) Ω may also be a
convex polygonal or polyhedral domain. We consider the Hilbert spaces

H =
{

u ∈ L2(Ø)d | div(u) = 0, u · n|∂Ω
= 0

}

,

V =
{

u ∈ H1
0 (Ø)d | div(u) = 0

}

,

endowed with the inner product of L2(Ø)d and H1
0 (Ø)d, respectively. For l ≥ 0

integer and 1 ≤ q ≤ ∞, we consider the standard spaces, W l,q(Ω)d, of functions
with derivatives up to order l in Lq(Ω), and H l(Ω)d = W l,2(Ω)d. We will
denote by ‖ · ‖l the norm in H l(Ω)d, and ‖ · ‖−l will represent the norm of its
dual space. We consider also the quotient spacesH l(Ω)/R with norm ‖p‖Hl/R =
inf{‖p+ c‖l | c ∈ R}.

We recall the following Sobolev’s imbeddings [2]: For q ∈ [1,∞), there exists
a constant C = C(Ω, q) such that

‖v‖Lq′ ≤ C‖v‖W s,q ,
1

q′
≥

1

q
−
s

d
> 0, q <∞, v ∈W s,q(Ω)d. (5)

For q′ = ∞, (5) holds with 1
q <

s
d .

The following inf-sup condition is satisfied (see [18]), there exists a constant
β > 0 such that

inf
q∈L2(Ω)/R

sup
v∈H1

0 (Ω)d

(q,∇ · v)

‖v‖1‖q‖L2/R
≥ β. (6)

Let Π : L2(Ø)d −→ H be the L2(Ø)d projection onto H . We denote by A
the Stokes operator on Ø:

A : D(A) ⊂ H −→ H, A = −Π∆, D(A) = H2(Ø)d ∩ V.

We shall assume that u is a strong solution up to time t = T , so that

‖u(t)‖1 ≤M1, ‖u(t)‖2 ≤M2, 0 ≤ t ≤ T, (7)

for some constantsM1 andM2. We shall also assume that there exists a constant
M̃2 such that

‖f‖1 + ‖ft‖1 + ‖ftt‖1 ≤ M̃2, 0 ≤ t ≤ T. (8)

Finally, we shall assume that for some k ≥ 2

sup
0≤t≤T

∥

∥∂
⌊k/2⌋
t f

∥

∥

k−1−2⌊k/2⌋
+

⌊(k−2)/2⌋
∑

j=0

sup
0≤t≤T

∥

∥∂jt f
∥

∥

k−2j−2
< +∞,

so that, according to Theorems 2.4 and 2.5 in [19], there exist positive constants
Mk and Kk such that the following bounds hold:

‖u(t)‖k + ‖ut(t)‖k−2 + ‖p(t)‖Hk−1/R ≤Mkτ(t)
1−k/2 , (9)

∫ t

0

σk−3(s)
(

‖u(s)‖2k + ‖us(s)‖
2
k−2 + ‖p(s)‖2Hk−1/R + ‖ps(s)‖

2
Hk−3/R

)

ds ≤ K2
k , (10)
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where τ(t) = min(t, 1) and σn = e−α(t−s)τn(s) for some α > 0. Observe that
for t ≤ T < ∞, we can take τ(t) = t and σn(s) = sn. For simplicity, we will
take these values of τ and σn.

Let Th = (τhi , φ
h
i )i∈Ih , h > 0 be a family of partitions of suitable domains

Ωh, where h is the maximum diameter of the elements τhi ∈ Th, and φ
h
i are the

mappings of the reference simplex τ0 onto τhi .
Let r ≥ 2, we consider the finite-element spaces

Sh,r =
{

χh ∈ C
(

Øh

)

|χh|τh
i
◦ φhi ∈ P r−1(τ0)

}

⊂ H1(Øh), S
0
h,r = Sh,r∩H

1
0 (Øh),

where P r−1(τ0) denotes the space of polynomials of degree at most r− 1 on τ0.
We shall denote by (Xh,r, Qh,r−1) the so-called Hood–Taylor element [7, 21],

when r ≥ 3, where

Xh,r =
(

S0
h,r

)d
, Qh,r−1 = Sh,r−1 ∩ L

2(Øh)/R, r ≥ 3,

and the so-called mini-element [8] when r = 2, where Qh,1 = Sh,2 ∩ L
2(Øh)/R,

andXh,2 = (S0
h,2)

d⊕Bh. Here, Bh is spanned by the bubble functions bτ , τ ∈ Th,

defined by bτ (x) = (d+ 1)d+1λ1(x) · · ·λd+1(x), if x ∈ τ and 0 elsewhere, where
λ1(x), . . . , λd+1(x) denote the barycentric coordinates of x. For these elements
a uniform inf-sup condition is satisfied (see [7]), that is, there exists a constant
β > 0 independent of the mesh grid size h such that

inf
qh∈Qh,r−1

sup
vh∈Xh,r

(qh,∇ · vh)

‖vh‖1‖qh‖L2/R
≥ β. (11)

The approximate velocity belongs to the discrete divergence-free space

Vh,r = Xh,r ∩
{

χh ∈ H1
0 (Øh)

d | (qh,∇ · χh) = 0 ∀qh ∈ Qh,r−1

}

,

which is not a subspace of V .
Let (u, p) ∈ (H2(Ω)d ∩ V )× (H1(Ω)/R) be the solution of a Stokes problem

with right-hand side g, we will denote by sh = Sh(u) ∈ Vh the so-called Stokes
projection (see [20]) defined as the velocity component of the solution of the
following problem: find (sh, qh) ∈ (Xh,r, Qh,r−1) such that

ν(∇sh,∇φh) + (∇qh, φh) = (g, φh) ∀φh ∈ Xh,r, (12)

(∇ · sh, ψh) = 0 ∀ψh ∈ Qh,r−1. (13)

The following bound holds for 2 ≤ l ≤ r:

‖u− sh‖0 + h‖u− sh‖1 ≤ Chl
(

‖u‖l + ‖p‖Hl−1/R

)

. (14)

The proof of (14) for Ω = Ωh can be found in [20]. The bound for the pressure
is [18]

‖p− qh‖L2/R ≤ Cβh
l−1

(

‖u‖l + ‖p‖Hl−1/R

)

, (15)

where the constant Cβ depends on the constant β in the inf-sup condition (11).
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We consider the semi-discrete finite-element approximation (uH , pH) to (u, p),
solution of (1)–(2). That is, given uH(0) = ΠHu0, we compute uH(t) ∈ XH,r

and pH(t) ∈ QH,r−1, t ∈ (0, T ], satisfying

(u̇H , φH) + ν(∇uH ,∇φH) + b(uH , uH , φH) + (∇pH , φH) = (f, φH) ∀φH ∈ XH,r,
(16)

(∇ · uH , ψH) = 0 ∀ψH ∈ QH,r−1,
(17)

where b(u, v, w) = ((u · ∇)v + 1
2 (∇ · u)v, w) for any u, v, w ∈ H1

0 (Ω)
d.

For 2 ≤ r ≤ 5, provided that (14)–(15) hold for l ≤ r, and (9)–(10) hold for
k = r, then we have

‖u(t)− uH(t)‖0 +H‖u(t)− uH(t)‖1 ≤ C
Hr

t(r−2)/2
, 0 ≤ t ≤ T, (18)

(see, e.g., [10, 19, 20]), and also,

‖p(t)− pH(t)‖L2/R ≤ C
Hr−1

t(r′−2)/2
, 0 ≤ t ≤ T, (19)

where r′ = r if r ≤ 4 and r′ = r + 1 if r = 5.

3 The new postprocessed method

The postprocessing technique we propose is a two-level or two-grid method. In
the first level, we choose a coarse mesh of size H and compute the mixed finite-
element approximation (uH , pH) to (u, p) defined by (16)-(17). In the second
level, the discrete velocity and pressure (uH(t), pH(t)) are postprocessed by
solving the following linear Oseen problem: find (ũh(t), p̃h(t)) ∈ (Xh,r, Qh,r−1),
h < H , satisfying for all φh ∈ Xh,r and ψh ∈ Qh,r−1

ν(∇ũh(t), φh) + ((uH(t) · ∇)ũh(t), φh) + (∇p̃h(t), φh) = (f(t)− u̇H(t), φh), (20)

(∇ · ũh(t), ψh) = 0. (21)

Equations (20)-(21) can also be solved over a higher order mixed finite-element
space over the same grid. For simplicity in the exposition we will only consider
the case in which we refine the mesh at the postprocessing step.

Let us observe that projecting equation (20) over the discretely-free space
Vh,r, and avoiding for simplicity the dependence on t in the notation, we get
that ũh ∈ Vh,r satisfies

ν(∇ũh, vh) + ((uH · ∇)ũh, vh) = (f − u̇H , φh), ∀vh ∈ Vh,r. (22)

We now prove that equation (22) is well-posed, i.e., for H small enough there
exists a unique function ũh ∈ Vh,r solving (22). Let us denote by B

H the bilinear
form defined by

BH(uh, vh) = ν(∇uh,∇vh) + ((uH · ∇)uh, vh), uh, vh ∈ Vh,r. (23)
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We proceed to show that BH is coercive which implies that there exists a unique
function ũh ∈ Vh,r satisfying (22). Let us also observe that once a unique ũh
is found, using the inf-sup condition (11) one easily obtains the existence and
uniqueness of the pair (ũh, p̃h) satisfying (20)-(21).

Lemma 1 Let BH be the bilinear form defined in (23). Then, there exists a
constant C such that for t > 0 the following bound holds:

∣

∣BH(vh, vh)
∣

∣ ≥

(

ν − C
Hr−1+γ

t(r−2)/2

)

‖vh‖
2
1, ∀vh ∈ Vh,r, (24)

where γ = 1/2 if the dimension d is d = 2, and γ = 1/4 if d = 3.

Proof To prove the coercivity of BH we follow [25, p. 2042]. Let us first
observe that for any vh ∈ Vh,r

BH(vh, vh) = ν‖∇vh‖
2
0 −

1

2
(∇ · uH , vh · vh).

Let qH be the L2 orthogonal projection of vh · vh over QH,r−1, so that applying
standard finite-element theory [9] and interpolation theory on Hilbert spaces (see
e. g. [31, § II.2] we have ‖vh · vh − qH‖L2(Ω)/R ≤ CHγ ‖vh · vh‖γ , for γ ∈ (0, 1].
Taking into account that the velocity u satisfies ∇ · u = 0 then

BH(vh, vh) = ν‖∇vh‖
2
0 −

1

2
(∇ · (uH − u), vh · vh − qH). (25)

And then

|(∇ · (uH − u), vh · vh − qH)| ≤ C‖uH − u‖1‖vh · vh − qH‖L2(Ω)/R.

Following [25, p. 2042] we get

‖vh · vh‖γ ≤ C‖vh‖
2
1, (26)

where γ = 1/2 if d = 2, and γ = 1/4 if d = 3. Using (26) together with (18) we
get

|(∇ · (uH − u), vh · vh − qH)| ≤ C
Hr−1

t(r−2)/2
Hγ‖vh‖

2
1.

Finally, going back to (25) we reach (24). �

Let us observe that, for t > 0 and H < (t(r−2)/2ν/C)1/(r−1+γ), as a consequence
of Lemma 1, there exists a unique ũh ∈ Vh,r satisfying (22).

We introduce now a linearized problem that will be used in the proof of
Theorem 1 where we state the rate of convergence of the new method. Let u
be the velocity in the solution (u, p) of (1)-(2). We will denote by (v, j) the
solution of the following linearized problem

− ν∆v + (u · ∇)v +∇j = d (27)

div(v) = 0

7



in the domain Ω subject to homogeneous Dirichlet boundary conditions. Let us
observe that since the divergence of u is zero the bilinear form:

B(v, w) = ν(∇v,∇w) + ((u · ∇)v, w), v, w ∈ V.

associated to this problem is continuous and coercive. Since the solution v ∈ V
of (27) satisfies

B(v, w) = (d, w), ∀w ∈ V

by the Lax-Milgram theorem there exists a unique solution v. Due to (6) there
exists also a unique pressure j.

We will assume in the sequel that both problem (27) and its dual problem
satisfy the regularity assumption

‖v‖2 + ‖j‖H1(Ω)/R ≤ C‖d‖0. (28)

The regularity assumption (28) can be proved by using the analogous regularity
of the Stokes problem and a bootstrap argument, see [25, Remark 2.1].

In the following lemma we state the rate of convergence of the mixed finite-
element approximation to the solution (v, j) of (27) defined as follows: find
(vh, jh) ∈ (Xh,r, Qh,r−1) such that

ν(∇vh,∇φh) + ((u · ∇)vh, φh) + (∇jh, φh) = (d, φh), ∀φh ∈ Xh,r, (29)

(∇ · vh, ψh) = 0, ∀ψh ∈ Qh,r−1.(30)

Lemma 2 Let (v, j) be the solution of (27) and let (vh, jh) be its mixed finite-
element approximation. Then, the following bounds hold for 2 ≤ l ≤ r

‖v − vh‖0 + h‖v − vh‖1 ≤ Chl
(

‖v‖l + ‖j‖Hl−1/R

)

, (31)

‖j − jh‖L2/R ≤ Chl−1
(

‖v‖l + ‖j‖Hl−1/R

)

. (32)

Proof Let us denote by sh = Sh(v) the Stokes projection of v. More precisely,
(sh, qh) ∈ (Xh,r, Qh,r−1) will be the solution of (12)-(13) with right-hand-side
g = d− (u · ∇)v. Let us denote by eh = sh − vh. Then, from (29) and (12) we
get

ν(∇eh,∇wh) + ((u · ∇)eh, wh) = ((u · ∇)(sh − v), wh), ∀wh ∈ Vh,r. (33)

Taking wh = eh in (33) and using (5) we get

ν‖eh‖
2
1 ≤ C‖u‖L2d/(d−1)‖sh − v‖1‖eh‖L2d ≤ C‖u‖1/2‖sh − v‖1‖eh‖1,

so that

‖eh‖1 ≤ C‖sh − v‖1. (34)

Since ‖v − vh‖1 ≤ ‖v − sh‖1 + ‖eh‖1 applying (14) we conclude h‖v − vh‖1
is bounded by the righ-hand side of (31). The bound (32) for the pressure is
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readily obtained by means of the auxiliary value kh = qh − jh. Subtracting (29)
from (31) and applying the inf-sup condition (11) one easily gets

β‖kh‖L2/R ≤ ν‖eh‖1 + C‖u‖1/2‖sh − v‖1,

so that due to (34) and (14) it follows that ‖kh‖L2/R is bounded by the right-
hand side of (32). Since ‖j − jh‖L2/R ≤ ‖j − qh‖L2/R + ‖kh‖L2/R, applying (15)
we finally prove (32).

We are left with the task of proving the bound for the L2 norm of the error
in the velocity. We will argue by duality. Let us observe that

‖eh‖0 = sup
ϕ∈L2 ϕ 6=0

|(eh, ϕ)|

‖ϕ‖0
. (35)

Let us fix ϕ ∈ L2 and let us denote by (w, k) the solution of the linearized dual
problem

−ν∆w − (u · ∇)w +∇k = ϕ,
div(w) = 0,

}

in Ω,

u = 0, on ∂Ω.
(36)

As stated before we assume that this problem satisfies the regularity assump-
tion (28), so that

‖w‖2 + ‖k‖H1(Ω)/R ≤ C‖ϕ‖0. (37)

We will denote by (wh, kh) ∈ (Xh,r, Qh,r−1) the mixed finite-element approxi-
mations to (w, k). Reasoning exactly as before and applying (37) we obtain

‖w − wh‖1 ≤ Ch
(

‖w‖2 + ‖k‖H1/R

)

≤ Ch‖ϕ‖0, (38)

‖k − kh‖L2/R ≤ Ch
(

‖w‖2 + ‖k‖H1/R

)

≤ Ch‖ϕ‖0. (39)

Integrating by parts we reach

(eh, ϕ) = ν(∇eh,∇w) + ((u · ∇)eh, w) − ((∇ · eh), k)

= ν(∇eh,∇(w − wh)) + ((u · ∇)eh, w − wh)− ((∇ · eh), k − kh)

+ν(∇eh,∇wh) + ((u · ∇)eh, wh).

And then, applying (38) and (39) we reach

|(eh, ϕ)| ≤ Cν‖eh‖1h‖ϕ‖0 + C‖u‖1/2‖eh‖1h‖ϕ‖0 + C‖eh‖1Ch‖ϕ‖0

+|ν(∇eh,∇wh) + ((u · ∇)eh, wh)|. (40)

Then, to conclude, it only remains to bound |ν(∇eh,∇wh) + ((u · ∇)eh, wh)|
which by (33) is equal to |((u · ∇)(sh − v), wh)|. Let us decompose

|((u · ∇)(sh − v), wh)| ≤ |((u · ∇)(sh − v), wh − w)| + |((u · ∇)(sh − v), w)|.

Then, integrating by parts in the last term

|((u · ∇)(sh − v), wh)| ≤ C‖u‖1/2‖sh − v‖1‖wh − w‖1 + |((u · ∇)w, sh − v)|,
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and the bound for the first term on the right hand side above concludes by
applying (14) and (38). Finally, since

|((u · ∇)w, sh − v)| ≤ C‖u‖L2d/(d−1)‖∇w‖L2d‖sh − v‖0.

Applying Sobolev inequality (5) together with (37) and (14) we reach

|((u · ∇)w, sh − v)| ≤ C‖u‖1/2‖ϕ‖0h
l
(

‖v‖l + ‖j‖Hl−1/R

)

,

so that the proof is finished. �

We now state some results that will be use to get the rate of convergence of the
new postprocessed method. The proof of the following lemma can be found in
[15, Lemma 4] for the case r = 2 and in [10, Lemma 5.1] for r = 3, 4.

Lemma 3 Let (u, p) be the solution of (1)–(2) and let uH be the mixed finite-
element approximation to u. Then, there exists a positive constant C such that

‖ut(t)− u̇H(t)‖−1 ≤
C

t(r−1)/2
Hr |log(H)|

r′
, t ∈ (0, T ], r = 2, 3, 4, (41)

‖A−1Π(ut(t)− u̇H(t)) ‖0 ≤
C

t(r−1)/2
Hr+1 |log(H)| , t ∈ (0, T ], r = 3, 4, (42)

where r′ = 2 when r = 2 and r′ = 1 otherwise.

The proof of the following lemma can be found in [10, p. 226].

Lemma 4 Let (u, p) be the solution of (1)–(2) and let uH be the mixed finite-
element approximation to u. Then, there exists a positive constant C such that

‖u(t)− uH(t)‖−1 ≤
C

t(r−1)/2
Hr+1 |log(H)| , t ∈ (0, T ], r = 3, 4. (43)

We end this section with a theorem that states the rate of convergence of the
new postprocessed method.

Theorem 1 Let (u, p) be the solution of (1)–(2) and for r = 2, 3, 4 let (9)–(10)
hold with k = r + 2. Then, there exist a positive constant C such that the
new postprocessed approximation (ũh(t), p̃h(t)) defined by (20)-(21) satisfies the
following bounds for t ∈ (0, T ] and H small enough:

‖u(t)− ũh(t)‖1 ≤ Ch+
C

t1/2
H2| log(H)|2, r = 2, (44)

‖u(t)− ũh(t)‖j ≤
C

t(r−2)/2
hr−j +

C

t(r−1)/2
Hr+1−j| log(H)|, j = 0, 1, r = 3, 4.(45)

‖p(t)− p̃h(t)‖L2/R ≤
C

t(r−2)/2
hr−1 +

C

t(r−1)/2
Hr| log(H)|r

′

, r = 2, 3, 4, (46)

where r′ = 2 for r = 2 and r′ = 1 otherwise.
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Proof Let us consider the linearized problem (27) with right hand side d =
f − ut. Then, the solution (v, j) of (27) is the solution (u, p) of (1)–(2). Let us
denote by (vh, jh) its mixed finite-element approximation, that is the solution
of (29)–(30). This approximation satisfy the error bounds (31) and (32) for l = r.
Let us decompose u− ũh = (u−vh)+(vh− ũh) and p− p̃h = (p− jh)+(jh− p̃h).
To bound the first terms in these two decompositions we will apply (31) and
(32). In the rest of the proof we deal with the other two terms.

Let us denote by eh = vh − ũh. Subtracting (20) from (29) it is easy to see
that eh satisfies

ν(∇eh,∇φh) + ((uH · ∇)eh, φh) = (u̇H − ut, φh) + (((uH − u) · ∇)vh, φh),

for all φh ∈ Vh,r. Taking φh = eh in the above equation and applying (24) we
get that for H < (t(r−2)/2ν/C)1/(r−1+γ) there exists a constant C such that

‖eh‖1 ≤ C
(

‖ut − u̇H‖−1 + ‖uH − u‖1‖vh − u‖1 + ‖uH − u‖0‖u‖3/2
)

,

and applying (41) from Lemma 3, (18) and (31) we get

‖eh‖1 ≤
C

t(r−1)/2
Hr |log(H)|

r′
+

C

t(r−2)/2

(

hHr−1 +Hr
)

, (47)

from which (44) and the case j = 1 in (45) are concluded.
We now get the error bound for the pressure. Let us denote rh = jh − p̃h.

Subtracting (20) from (29) and using (11) it is easy to obtain

β‖rh‖L2/R ≤ ν‖eh‖1 + C‖uH‖1/2‖eh‖1 + ‖u̇H − uh‖−1

+C‖uH − u‖1‖vh − u‖1 + C‖uH − u‖0‖u‖3/2,

from which we get (46) applying (47), (41) from Lemma 3, (18) and (31).
To conclude we get the error bound for the velocity in the L2 norm. We

will argue as in the proof of Lemma 2, that is, recalling (35), for ϕ ∈ L2(Ω)
we consider the solution (w, k) of (36), so that (40) holds, and we are left to
estimate |ν(∇eh,∇wh) + ((u · ∇)eh, wh)|. It is easy to see that

ν(∇eh,∇wh) + ((u · ∇)eh, wh) = (u̇H − ut, wh) + (((uH − u) · ∇)ũh, wh). (48)

Let us now bound the two terms on the right hand side of (48). For the first
one, using (37) and (38) we get

(u̇H − ut, wh) = (u̇H − ut, wh − w) + (u̇H − ut, w)

≤ ‖u̇H − ut‖−1‖wh − w‖1 + ‖A−1Π(u̇H − ut)‖0‖Aw‖0

≤ C‖u̇H − ut‖−1h‖ϕ‖0 + C‖A−1Π(u̇H − ut)‖0‖ϕ‖0.

Applying now (41) and (42) we have that (u̇H−ut, wh) is O(H
r+1| log(H)|/(t(r−1)/2)

for r = 3, 4. Finally, we will bound the second term on the right hand side of
(48). To this end we decompose

(((uH − u) · ∇)ũh, wh) = (((uH − u) · ∇)(ũh − u), wh) + (((uH − u) · ∇)u,wh)

≤ C‖uH − u‖1/2‖ũh − u‖1‖wh‖1 + (((uH − u) · ∇)u,wh)

≤ CH‖ũh − u‖1‖ϕ‖0 + (((uH − u) · ∇)u,wh),

11



where in the last inequality we have applied (18) and we have bounded ‖wh‖1 ≤
C‖w‖1 ≤ C‖ϕ‖0. Then, to conclude, it only remains to bound (((uH − u) ·
∇)u,wh). Adding and subtracting w we get

(((uH − u) · ∇)u,wh) = (((uH − u) · ∇)u,wh − w) + (((uH − u) · ∇)u,w)

≤ C‖uH − u‖0‖u‖3/2‖wh − w‖1 + C‖uH − u‖−1‖∇u · w‖1

≤ C‖uH − u‖0h‖ϕ‖0 + C‖uH − u‖−1‖u‖2‖w‖2

≤ C‖uH − u‖0h‖ϕ‖0 + C‖uH − u‖−1‖ϕ‖0,

where we have applied (37). To conclude we apply (18) and Lemma 4. �

Remark 1 We observe from Theorem 1 that the postprocessed method in-
creases the rate of convergence of the Galerkin method in one unit in terms
of H , the size of the coarse mesh. In the case of linear elements the improve-
ment is only achieved in the H1 norm of the velocity but it is not obtained
in the L2 norm. Analogous results had been obtained for the standard post-
processing in the linear case, see [3], [15]. Let us also observe that a correct
selection of the coarse and fine mesh diameters gives for the new postprocessed
method the same rate of convergence than the Galerkin method over the fine
mesh, although, of course, with different constants in the error bounds. The
advantage of the method we propose is the saving in computational effort. For
the method we propose the time integration is performed using the standard
Galerkin method over the coarse mesh and only at the final time we solve one
linearized Oseen-type problem over the fine mesh. Let us observe that, for ex-
ample, the selection H = h1/2 allows to get for the new postprocessed method
the rate of convergence of the fine mesh in the H1 norm when using linear ele-
ments. The selection H = h2/3 allows to get the rate of convergence of the fine
mesh in the H1 norm when using quadratic elements, the choice H = h3/4 gives
the rate of convergence of the fine mesh in the L2 norm also for quadratics and
so on.

The reason why we have not carried out the error analysis for higher than
cubic finite elements is that, as in the papers [20] and [10], due to the loss of
regularity at t = 0 no better than O(H5| log(H)|) error bounds can be proved.

4 Numerical experiments

We consider the Navier-Stokes equations (1) in the domain Ω = [0, 1] × [0, 1]
subject to homogeneous Dirichlet boundary conditions. For the numerical ex-
periments of this section we approximate the equations using the mini-element
[8] over a regular triangulation of Ω induced by the set of nodes (i/N, j/N),
0 ≤ i, j ≤ N , where N = 1/H is an integer. We study the spatially semi-
discrete case. Hence, in the time integration (with the trapezoidal rule) suffi-
ciently small time steps were taken so as to ensure that errors arising from the
spatial discretization were dominant. In the first experiment we take the forcing
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term f(t, x) such that the solution of (1)-(2) with ν = 0.05 is

u1(x, y, t) = πt sin2(πx) sin(2πy),

u2(x, y, t) = −πt sin2(πy) sin(2πx),

p(x, y, t) = 20tx2y.

When using the mini-element it has been observed and reported in the literature
(see for instance [32], [33], [5] [23], [28] and [29]) that the linear part of the
approximation to the velocity, ulh, is a better approximation to the solution u
than uh itself. The bubble part of the approximation is only introduced for
stability reasons and does not improve the approximation to the velocity and
pressure terms. For this reason in the numerical experiments of this section
we only consider the errors in the linear approximation to the velocity. Also,
following [3], we postprocess only the linear approximation to the velocity, i.e.,
we solve problem (20)-(21) substituting uH and u̇H by ulH and u̇lH respectively.
The finite element space at the postprocessed step is the same mini-element
defined over a refined mesh of size h small enough to capture the asymptotic rate
of convergence in the fine grid. The coarse and fine mesh sizes in the experiments
are H = 1/6, H = 1/8, H = 1/10 and H = 1/20 and h = 1/20, h = 1/26,
h = 1/32 and h = 1/36 respectively. For the postprocessed approximation we
also keep only the linear part. We apply the postprocessing step only once at
time t = 0.5. In Figure 1 we have represented the size of the Galerkin and
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Figure 1: Galerkin (solid lines) and postprocessed (dashed lines) errors in L2

(asterisks) and H1 (circles) for H = 1/6, 1/8, 1/10 and 1/12 and h = 1/20,
1/26, 1/32 and 1/36 respectively. On the left, errors for the first component of
the velocity. On the right, L2 errors for the pressure.

postprocessed errors with respect to the inverse of the coarse mesh size H . On
the left part of the picture we present the results corresponding to the first
component of the velocity. The results obtained for the second component of
the velocity are analogous. On the right part of the picture we present the
errors in the pressure. In both pictures, we have used solid line for the Galerkin
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method and dashed line for the postprocessed method. The errors are measured
in both the H1 norm and the L2 norm. In the picture, they are represented
by circles (H1 norm errors) and asterisks (L2 norm errors). We can observe
on the left of Figure 1 that, in agreement with the theory, the postprocessed
method using the mini-element does not increase the rate of convergence in the
L2 norm of the velocity although the size of the errors are reduced. In the
H1 norm, however, also as predicted by the theory, the postprocessed method
does increase the order of convergence by one unit (indeed, the errors of the
postprocessed method in the H1 norm are slightly smaller than those of the
Galerkin method in the L2 norm). The same improvement is observed for the
L2 errors of the pressure on the right of Figure 1. This means that we can
obtain the level of error corresponding to the fine mesh at essentially the cost of
the computation in the coarse mesh because the computation on the fine mesh
is performed only once at time t = 0.5. Then, the dominant computational cost
is caused by the time evolution in the coarse mesh saving time when compared
with the time evolution in the fine mesh that is needed in a standard approach.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−1.5

−1

−0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: First component of the velocity for the Galerkin method with ν = 0.01
and H = 1/10.

In the next experiment we will show that the new postprocessed method
produces better results than both the Galerkin method and the standard post-
processed method (4). We consider now equations (1) with initial condition

u1(x, y, t) = −6 sin(πx)3 sin(πy)2 cos(πy),

u2(x, y, t) = 6 sin(πx)2 sin(πy)3 cos(πx),

and forcing term f = 0. We take first ν = 0.01. In Figure 2 we have represented
the linear part of the first component of the velocity for the Galerkin method
withH = 1/10 at time T = 0.5. In Figure 3 we show the standard postprocessed
approximation with H = 1/10 and h = 1/30. We can observe that the standard
postprocessing introduces some oscillations that were not present in the Galerkin
approximation. These oscillations are not reduced with a smaller value of h.
Finally, in Figure 4 we have represented the linear part of the first component
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Figure 3: First component of the velocity for the postprocessed method with
ν = 0.01, H = 1/10 and h = 1/30.
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Figure 4: First component of the velocity for the new postprocessed method
with ν = 0.01, H = 1/10 and h = 1/30.

of the velocity for the new postprocessed approximation and the same values
of coarse and fine mesh sizes, H = 1/10 and h = 1/30. We observe that this
approximation does not oscillate at all and it improves the accuracy of both
Galerkin and standard postprocessed approximations.

In the last experiment we repeat the experiment with a smaller value of the
diffusion parameter, ν = 0.005, and the same values of H and h as that of
the previous experiment. As it was already observed in the case of convection-
diffusion equations [12] the behavior of the standard postprocessed method de-
teriorates as the diffusion parameter decreases.

We can observe that both the Galerkin and the new postprocessed approxi-
mations, see Figures 5 and 7 respectively, do not present oscillations. As before,
we can also observe the smoothing effect achieved by postprocessing with the
new method proposed in this paper. On the other hand, the standard postpro-
cessed method produces a completely wrong approximation, see Figure 6. Let us
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Figure 5: First component of the velocity for the Galerkin method with ν =
0.005 and H = 1/10.
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Figure 6: First component of the velocity for the postprocessed method with
ν = 0.005, H = 1/10 and h = 1/30.

remark that, as it has been noted before in the literature, see [6], [30], the bubble
functions used in the mini-element to generate a stable mixed finite-element sat-
isfying the inf-sup condition (11) have also a slightly stabilizing (over-diffusive)
effect for moderate values of the Reynolds number. This fact explains the non-
oscillating behavior of the linear part of the approximation to the velocity in
the Galerkin method of Figure 5 We can also observe, see Figure 7, that the
over-diffusive effect appearing in the Galerkin approximation of Figure 5 is at-
tenuated by postprocessing with the new method.
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Figure 7: First component of the velocity for the new postprocessed method
with ν = 0.005, H = 1/10 and h = 1/30.
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ship between stabilized finite element methods and the Galerkin method with
bubble functions, Comput. Meth. Appl. Mech. Engrg. 96, 1992, 117–129.

[7] F. Brezzi and R. S. Falk, Stability of higher-order Hood–Taylor methods,
SIAM J. Numer. Anal., 28 (1991), pp. 581–590.

[8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods,
Springer, New York, 1991.

[9] P. G. Ciarlet, The Finite Element Method for Elliptic Problems , North-
Holland, Amsterdam (1978).

17
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