Skip to main content
Log in

Image Approximations to Electrostatic Potentials in Layered Electrolytes/Dielectrics and an Ion-Channel Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Image charge approximations are developed for electric potentials in the Poisson-Boltzmann theory in inhomogeneous media consisting of dielectrics or electrolyte solutions such as the layered structure in a membrane or cylindrical ion-channels. The image charges are obtained either by a least square fitting between the potential of unknown images and the exact reaction potential (for the layered media or cylindrical region) or by a Prony fitting to the Fourier transform of the exact potential (layered media only) and a Sommerfeld-type identity, which yields the locations and strengths of the image charges. Next, combining the results for the two geometries, the image charge approximation for the reaction potential, due to a charge inside an ion-channel model, is obtained, which accounts for the polarization of the region outside the ion-channel (consisting of a membrane and electrolyte solutions below and above). Such an approximation to the reaction field in the ion-channel model can be used for an explicit/implicit hybrid treatment of electrostatics interaction in modeling ion-channels. Numerical tests show that the proposed method has an attractive performance in computing electrostatic interactions of source charges inside the ion-channel model via a simple summation of pairwise interactions among source and image charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Honig, B., Nicholls, A.: Classical electrostatics in biology and chemistry. Science 268, 1144–1149 (1995)

    Article  Google Scholar 

  2. Fogolari, F., Brigo, A., Molinari, H.: The Poisson-Boltzmann equation for biomolecular electrostatics: A tool for structural biology. J. Mol. Biol. 15, 377–392 (2002)

    Google Scholar 

  3. Baker, N.A.: Improving implicit solvent simulations: A Poisson-centric view. Curr. Opin. Struct. Biol. 15, 137–143 (2005)

    Article  Google Scholar 

  4. Koehl, P.: Electrostatics calculations: latest methodological advances. Curr. Opin. Struct. Biol. 16, 142–151 (2006)

    Article  Google Scholar 

  5. Wang, J., Tan, C., Tan, Y.H., Lu, Q., Luo, R.: Poisson-Boltzmann solvents in molecular dynamics simulations. Commun. Comput. Phys. 3, 1010–1031 (2008)

    Google Scholar 

  6. Hill, T.L.: An Introduction to Statistical Thermodynamics. Dover, New York (1986)

    Google Scholar 

  7. Schlick, T.: Molecular Modeling and Simulation: An Interdisciplinary Guide. Springer, Berlin (2002)

    MATH  Google Scholar 

  8. Fraenkel, D.: Simplified electrostatic model for the thermodynamic excess potentials of binary strong electrolyte solutions with size-dissimilar ions. Mol. Phys. 108(11), 1435–1466 (2010)

    Article  Google Scholar 

  9. Stell, G., Joslin, C.G.: The Donnan equilibrium: a theoretical study of the effects of interionic forces. Biophys. J. 50(5), 855–859 (1986)

    Article  Google Scholar 

  10. Torrie, G.M., Valleau, J.P.: Electrical double layers. 4. Limitations of the Gouy-Chapman theory. J. Phys. Chem. 86, 3251–3257 (1982)

    Article  Google Scholar 

  11. Zemaitis, J.F. Jr., Clark, D.M., Rafal, M., Scrivner, N.C.: Handbook of Aqueous Electrolyte Thermodynamics. Design Institute for Physical Property Data, American Institute of Chemical Engineers, New York (1986)

    Book  Google Scholar 

  12. Kjellander, R., Marčelja, S.: Correlation and image charge effects in electric double layers. Chem. Phys. Lett. 112, 49–53 (1984)

    Article  Google Scholar 

  13. Levin, Y.: Electrostatic corrections: from plasma to biology. Rep. Prog. Phys. 65, 1577–1632 (2002)

    Article  Google Scholar 

  14. Eisenberg, B., Hyon, Y., Liu, C.: Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. J. Chem. Phys. 133, 104104 (2010)

    Article  Google Scholar 

  15. French, R.H., Parsegian, V.A., Podgornik, R., Rajter, R.F., Jagota, A., Luo, J., Asthagiri, D., Chaudhury, M.K., Chiang, Y.-m., Granick, S., Kalinin, S., Kardar, M., Kjellander, R., Langreth, D.C., Lewis, J., Lustig, S., Wesolowski, D., Wettlaufer, J.S., Ching, W.-Y., Finnis, M., Houlihan, F., von Lilienfeld, O.A., van Oss, C.J., Zemb, T.: Long range interactions in nanoscale science. Rev. Mod. Phys. 82(2), 1887–1944 (2010)

    Article  Google Scholar 

  16. Warshel, A.: A microscopic model for calculations of chemical processes in aqueous solutions. Chem. Phys. Lett. 55, 454–458 (1978)

    Article  Google Scholar 

  17. King, G., Warshel, A.: A surface constrained all-atom solvent model for effective simulations of polar solutions. J. Chem. Phys. 91, 3647–3661 (1989)

    Article  Google Scholar 

  18. Beglov, D., Roux, B.: Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J. Chem. Phys. 100, 9050–9063 (1994)

    Article  Google Scholar 

  19. Alper, H., Levy, R.M.: Dielectric and thermodynamic response of a generalized reaction field model for liquid state simulations. J. Chem. Phys. 99, 9847–9852 (1993)

    Article  Google Scholar 

  20. Okur, A., Simmerling, C.: Hybrid explicit/implicit solvation methods. Annu. Rep. Comput. Chem. 2, 97–109 (2006)

    Article  Google Scholar 

  21. Lin, Y., Baumketner, A., Deng, S., Xu, Z., Jacobs, D., Cai, W.: An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions. J. Chem. Phys. 131, 154103 (2009)

    Article  Google Scholar 

  22. Xu, Z., Cai, W.: Fast analytical methods for macroscopic electrostatic models in biomolecular simulations. SIAM Rev. 53, 683–720 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirkwood, J.G.: Theory of solutions of molecules containing widely separated charges with special applications to zwitterions. J. Chem. Phys. 2, 351–361 (1934)

    Article  Google Scholar 

  24. Tanford, C., Kirkwood, J.G.: Theory of protein titration curves. I. General equations for impenetrable spheres. J. Am. Chem. Soc. 79, 5333–5339 (1957)

    Article  Google Scholar 

  25. Friedman, H.L.: Image approximation to the reaction field. Mol. Phys. 29, 1533–1543 (1975)

    Article  Google Scholar 

  26. Abagyan, R., Totrov, M.: Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J. Mol. Biol. 235, 983–1002 (1994)

    Article  Google Scholar 

  27. Lindell, I.V.: Electrostatic image theory for the dielectric sphere. Radio Sci. 27, 1–8 (1992)

    Article  Google Scholar 

  28. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, Cambridge (1987)

    Google Scholar 

  30. Cai, W., Deng, S., Jacobs, D.: Extending the fast multipole method to charges inside or outside a dielectric sphere. J. Comput. Phys. 223, 846–864 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Deng, S., Cai, W.: Discrete image approximations of ionic solvent induced reaction field to charges. Commun. Comput. Phys. 2, 1007–1026 (2007)

    Google Scholar 

  32. Xu, Z., Deng, S., Cai, W.: Image charge approximations of reaction fields in solvents with arbitrary ionic strength. J. Comput. Phys. 228, 2092–2099 (2009)

    Article  MATH  Google Scholar 

  33. Qin, P., Xu, Z., Cai, W., Jacobs, D.: Image charge methods for a three-dielectric-layer hybrid solvation model of biomolecules. Commun. Comput. Phys. 6, 955–977 (2009)

    Article  Google Scholar 

  34. Lin, Y., Baumketner, A., Song, W., Deng, S., Jacobs, D., Cai, W.: Ionic solvation studied by image-charge reaction field method. J. Chem. Phys. 134, 044105 (2011)

    Article  Google Scholar 

  35. Xu, Z., Cai, W., Cheng, X.: Image charge method for reaction fields in a hybrid ion-channel model. Commun. Comput. Phys. 9, 1056–1070 (2011)

    MathSciNet  Google Scholar 

  36. Cui, S.T.: Electrostatic potential in cylindrical dielectric media using the image charge method. Mol. Phys. 104, 2993–3001 (2006)

    Article  Google Scholar 

  37. Boda, D., Gillespie, D., Nonner, W., Henderson, D., Eisenberg, B.: Computing induced charges in inhomogeneous dielectric media: application in a Monte Carlo simulation of complex ionic systems. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 69(4 Pt 2), 046702 (2004)

    Article  Google Scholar 

  38. Cheng, M.H., Coalson, R.D.: An accurate and efficient empirical approach for calculating the dielectric self-energy and ion-ion pair potential in continuum models of biological ion channels. J. Phys. Chem. B 109(1), 488–498 (2005)

    Article  Google Scholar 

  39. Bardhan, J.P., Eisenberg, R.S., Gillespie, D.: Discretization of the induced-charge boundary integral equation. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 80(1), 011906 (2009)

    Article  Google Scholar 

  40. Levitt, D.G.: Modeling of ion channels. J. Gen. Physiol. 113, 789–794 (1999)

    Article  Google Scholar 

  41. Tieleman, D.P., Biggin, P.C., Smith, G.R., Sansom, M.S.P.: Simulation approaches to ion channel structure-function relationships. Q. Rev. Biophys. 34, 473–561 (2001)

    Article  Google Scholar 

  42. Roux, B., Allen, T., Berneche, S., Im, W.: Theoretical and computational models of biological ion channels. Q. Rev. Biophys. 37, 15–103 (2004)

    Article  Google Scholar 

  43. Hille, B.: Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland (1992)

    Google Scholar 

  44. Eisenberg, B.: Crowded charges in ion channels. Adv. Chem. Phys. 148, 77–223 (2012)

    Google Scholar 

  45. Yang, P.K., Liaw, S.H., Lim, C.: Representing an infinite solvent system with a rectangular finite system using image charges. J. Phys. Chem. B 106, 2973–2982 (2002)

    Article  Google Scholar 

  46. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (2001)

    Google Scholar 

  47. Sommerfeld, A.: Partial Differential Equations in Physics. Academic Press, New York (1949)

    MATH  Google Scholar 

  48. Chew, W.C.: Waves and Fields in Inhomogeneous Media. Van Nostrand, New York (1990)

    Google Scholar 

  49. Neumann, C.: Hydrodynamische untersuchungen: Nebst einem anhange uber die probleme der elektrostatik und der magnetischen induktion, pp. 279–282. Teubner, Leipzig (1883)

    Google Scholar 

  50. Lindell, I.V.: Application of the image concept in electromagnetism. In: Stone, W.R. (ed.) The Review of Radio Science 1990–1992, pp. 107–126. Oxford University Press, Oxford (1993)

    Google Scholar 

  51. Norris, W.T.: Charge images in a dielectric sphere. IEE Proc. Sci. Meas. Technol. 142, 142–150 (1995)

    Article  Google Scholar 

  52. Prony, R.: Essai experimental et analytique. J. Éc. Polytech. 1, 24–76 (1795)

    Google Scholar 

  53. Weiss, L., McDonough, R.N.: Prony’s method, z-transforms, and Padé approximation. SIAM Rev. 5, 145–149 (1963)

    Article  MathSciNet  Google Scholar 

  54. Im, W., Beglov, D., Roux, B.: Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation. Comput. Phys. Commun. 111, 59–75 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H., Xu, Z., Tang, H. et al. Image Approximations to Electrostatic Potentials in Layered Electrolytes/Dielectrics and an Ion-Channel Model. J Sci Comput 53, 249–267 (2012). https://doi.org/10.1007/s10915-011-9567-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9567-2

Keywords

Navigation