Skip to main content
Log in

Continuation Along Bifurcation Branches for a Tumor Model with a Necrotic Core

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a free boundary problem for a system of partial differential equations, which arises in a model of tumor growth with a necrotic core. For any positive number R and 0<ρ<R, there exists a radially-symmetric stationary solution with tumor free boundary r=R and necrotic free boundary r=ρ. The system depends on a positive parameter μ, which describes tumor aggressiveness, and for a sequence of values μ 2<μ 3<…, there exist branches of symmetry-breaking stationary solutions, which bifurcate from these values. Upon discretizing this model, we obtain a family of polynomial systems parameterized by tumor aggressiveness factor μ. By continuously changing μ using a homotopy, we are able to compute nonradial symmetric solutions. We additionally discuss linear and nonlinear stability of such solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adam, J.A.: General aspect of modeling tumor growth and immune response. In: Adam, J.A., Bellomo, N. (eds.) A Survey of Models for Tumor-Immune System Dynamics, pp. 14–87. Birkhäuser, Boston (1996)

    Chapter  Google Scholar 

  2. Adam, J.A., Maggelakis, S.A.: Diffusion regulated growth characteristics of a spherical prevascular carcinoma. Bull. Math. Biol. 52, 549–582 (1990)

    MATH  Google Scholar 

  3. Ayati, B.P., Webb, G.F., Anderson, A.R.A.: Computational methods and results for structured multiscale models of tumor invasion. Multiscale Model. Simul. 5, 1–20 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for numerical algebraic geometry. Available at www.nd.edu/~sommese/bertini

  5. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Adaptive multiprecision path tracking. SIAM J. Numer. Anal. 46, 722–746 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Stepsize control for path tracking. Contemp. Math. 496, 21–31 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bazally, B., Friedman, A.: A free boundary problem for elliptic-parabolic system: application to a model of tumor growth. Commun. Partial Differ. Equ. 28, 517–560 (2003)

    Article  Google Scholar 

  8. Bazally, B., Friedman, A.: Global existence and asymptotic stability for an elliptic-parabolic free boundary problem: an application to a model of tumor growth. Indiana Univ. Math. J. 52, 1265–1304 (2003)

    Article  MathSciNet  Google Scholar 

  9. Britton, N., Chaplain, M.A.J.: A qualitative analysis of some models of tissue growth. Math. Biosci. 113, 77–89 (1993)

    Article  MATH  Google Scholar 

  10. Byrne, H.M., Chaplain, M.A.J.: Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130, 151–181 (1995)

    Article  MATH  Google Scholar 

  11. Byrne, H.M., Chaplain, M.A.J.: Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135, 187–216 (1996)

    Article  MATH  Google Scholar 

  12. Byrne, H.M., Chaplain, M.A.J.: Free boundary value problems associated with growth and development of multicellular spheroids. Eur. J. Appl. Math. 8, 639–658 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bellomo, N., Preziosi, L.: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comput. Model. 32, 413–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Byrne, H.M.: The importance of intercellular adhesion in the development of carcinomas. IMA J. Math. Appl. Med. Biol. 14, 305–323 (1997)

    Article  MATH  Google Scholar 

  15. Byrne, H.M., Chaplain, M.A.J.: Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Math. Comput. Model. 12, 1–17 (1996)

    Article  Google Scholar 

  16. Byrne, H.M.: Mathematical modelling of solid tumour growth: from avascular to vascular, via angiogenesis. Math. Biol. 14, 219–287 (2009)

    MathSciNet  Google Scholar 

  17. Chaplain, M.A.J.: The development of a spatial pattern in a model for cancer growth. In: Othmer, H.G., Maini, P.K., Murray, J.D. (eds.) Experimental and Theoretical Advances in Biological Pattern Formation, pp. 45–60. Plenum, New York (1993)

    Chapter  Google Scholar 

  18. Chaplain, M.A.J.: Modelling aspects of cancer growth: insight from mathematical and numerical analysis and computational simulation. In: Multiscale Problems in the Life Sciences. Lecture Notes in Math., vol. 1940, pp. 147–200. Springer, Berlin (2008)

    Chapter  Google Scholar 

  19. Chen, X., Friedman, A.: A free boundary problem for elliptic-hyperbolic system: an application to tumor growth. SIAM J. Math. Anal. 35, 974–986 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cristini, V., Frieboes, H.B., Gatenby, R., Caserta, S., Ferrari, M., Sinek, J.: Morphologic instability and cancer invasion. Clin. Cancer Res. 11, 6772–6779 (2005)

    Article  Google Scholar 

  21. Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cui, S., Friedman, A.: Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Math. Biosci. 164, 103–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cui, S., Friedman, A.: Analysis of a mathematical model of the growth of necrotic tumors. Aust. J. Math. Anal. Appl. 255, 636–677 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cui, S., Escher, J.: Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors. SIAM J. Math. Anal. 39, 210–235 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cui, S., Escher, J.: Asymptotic behaviour of solutions of a multidimensional moving boundary problem modeling tumor growth. Commun. Partial Differ. Equ. 32, 636–655 (2008)

    Article  MathSciNet  Google Scholar 

  26. Franks, S.J.H., King, J.R.: Interaction between a uniformly proliferating tumor and its surroundings: uniform material properties. Math. Med. Biol. 20, 47–89 (2003)

    Article  MATH  Google Scholar 

  27. Fontelos, M., Friedman, A.: Symmetry-breaking bifurcations of free boundary problems in three dimensions. Asymptot. Anal. 35, 187–206 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Friedman, A.: A free boundary problem for a coupled system of elliptic, parabolic and stokes equations modeling tumor growth. Interfaces Free Bound. 8, 247–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Friedman, A.: A hierarchy of cancer models and their mathematical challenges. Mathematical models in cancer. Discrete Contin. Dyn. Syst., Ser. B 4, 147–159 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Friedman, A.: Mathematical analysis and challenges arising from models of tumor growth. Math. Models Methods Appl. Sci. 17, 1751–1772 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Friedman, A.: A multiscale tumor model. Interfaces Free Bound. 10, 245–262 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Friedman, A.: Free boundary problems associated with multiscale tumor models. Math. Model. Nat. Phenom. 4, 134–155 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Friedman, A., Hu, B.: Bifurcation from stability to instability for a free boundary problem arising in a tumor model. Arch. Ration. Mech. Anal. 180, 293–330 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Friedman, A., Hu, B.: Asymptotic stability for a free boundary problem arising in a tumor model. J. Differ. Equ. 227, 598–639 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Friedman, A., Hu, B.: Bifurcation for a free boundary problem modeling tumor growth by stokes equation. SIAM J. Math. Anal. 39, 174–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Friedman, A., Hu, B.: Bifurcation from stability to instability for a free boundary problem modeling tumor growth by stokes equation. J. Math. Anal. Appl. 327, 643–664 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Friedman, A., Hu, B.: Stability and instability of Liapunov-Schmidt and Hopf bifurcation for a free boundary problem arising in a tumor model. Trans. Am. Math. Soc. 360, 5291–5342 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Friedman, A., Kao, C.-Y., Hu, B.: Cell cycle control at the first restriction point and its effect on tissue growth. J. Math. Biol. 60, 881–907 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Friedman, A., Reitich, F.: Analysis of a mathematical model for growth of tumor. J. Math. Biol. 38, 262–284 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Friedman, A., Reitich, F.: Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth. Trans. Am. Math. Soc. 353, 1587–1634 (2000)

    Article  MathSciNet  Google Scholar 

  41. Frieboes, H.B., Zheng, X., Sun, C.-H., Tromberg, B., Gatenby, R., Cristini, V.: An integrated computational/experimental model of tumor invasion. Cancer Res. 66, 1597–1604 (2006)

    Article  Google Scholar 

  42. Greenspan, H.P.: Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 52, 317–340 (1972)

    Google Scholar 

  43. Greenspan, H.P.: On the growth of cell culture and solid tumors. Theor. Biol. 56, 229–242 (1976)

    Article  MathSciNet  Google Scholar 

  44. Hao, W., Hauenstein, J.D., Hu, B., Liu, Y., Sommese, A.J., Zhang, Y.-T.: Bifurcation of steady-state solutions for a tumor model with a necrotic core. Nonlinear Analysis Ser. B, Real World Appl. 13, 694–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hao, W., Hauenstein, J.D., Hu, B., Sommese, A.J.: A three-dimensional steady-state tumor system. Appl. Math. Comput. 218, 2661–2669 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hao, W., Hauenstein, J.D., McCoy, T., Hu, B., Sommese, A.J.: Computing steady-state solutions for a free boundary problem modeling tumor growth by stokes equation (submitted). Available at www.nd.edu/~sommese/preprints

  47. Hogea, C.S., Murray, B.T., Sethian, J.A.: Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method. J. Math. Biol. 53, 86–134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lejeune, O., Chaplain, M.A.J., El Akili, I.: Oscillations and bistability in the dynamics of cytotoxic reactions mediated by the response of immune cells to solid tumours. Math. Comput. Model. 47, 649–662 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, X., Cristini, V., Nie, Q., Lowengrub, J.: Nonlinear three-dimensional simulation of solid tumor growth. Discrete Contin. Dyn. Syst., Ser. B 7, 581–604 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.-L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23, 1–91 (2010)

    Article  MathSciNet  Google Scholar 

  51. Maggelakis, S.A., Adam, J.A.: Mathematical model for prevascular growth of a spherical carcinoma. Math. Comput. Model. 13, 23–38 (1990)

    Article  MATH  Google Scholar 

  52. McEwain, D.L.S., Morris, L.E.: Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth. Math. Biosci. 39, 147–157 (1978)

    Article  Google Scholar 

  53. Weisstein, E.W.: Mean curvature. From MathWorld–A. Wolfram Web Resource. Available at mathworld.wolfram.com/MeanCurvature.html

  54. Sommese, A.J., Wampler, C.W.: Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  55. Zheng, X., Wise, S.M., Cristini, V.: Nonlinear simulation of tumor necrosis, neovascularization and tissue invasion via an adaptive finite-element/level-Set method. Bull. Math. Biol. 67, 211–259 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

W. Hao was supported by the Dunces Chair of the University of Notre Dame and NSF grant DMS-0712910. J.D. Hauenstein was supported by Texas A&M University and NSF grant DMS-0915211. A.J. Sommese was supported by the Dunces Chair of the University of Notre Dame and NSF grant DMS-0712910. Y.-T. Zhang was partially supported by NSF grant DMS-0810413.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenrui Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, W., Hauenstein, J.D., Hu, B. et al. Continuation Along Bifurcation Branches for a Tumor Model with a Necrotic Core. J Sci Comput 53, 395–413 (2012). https://doi.org/10.1007/s10915-012-9575-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9575-x

Keywords

Navigation