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Abstract. In this paper, we propose and analyze an accelerated linearized Bregman (ALB) method for solving the basis

pursuit and related sparse optimization problems. This accelerated algorithm is based on the fact that the linearized Bregman

(LB) algorithm is equivalent to a gradient descent method applied to a certain dual formulation. We show that the LB method

requires O(1/ǫ) iterations to obtain an ǫ-optimal solution and the ALB algorithm reduces this iteration complexity to O(1/
√
ǫ)

while requiring almost the same computational effort on each iteration. Numerical results on compressed sensing and matrix

completion problems are presented that demonstrate that the ALB method can be significantly faster than the LB method.
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1. Introduction. In this paper, we are interested in the following optimization problem

min
x∈Rn

J(x) s.t. Ax = b,(1.1)

where A ∈ R
m×n, b ∈ R

m and J(x) is a continuous convex function. An important instance of (1.1) is the

so-called basis pursuit problem when J(x) := ‖x‖1 =
∑n

j=1
|xj |:

min
x∈Rn

‖x‖1 s.t. Ax = b.(1.2)

Since the development of the new paradigm of compressed sensing [9, 11], the basis pursuit problem (1.2)

has become a topic of great interest. In compressed sensing, A is usually the product of a sensing matrix Φ

and a transform basis matrix Ψ and b is a vector of the measurements of the signal s = Ψx. The theory of

compressed sensing guarantees that the sparsest solution (i.e., representation of the signal s = Ψx in terms

of the basis Ψ) of Ax = b can be obtained by solving (1.2) under certain conditions on the matrix Φ and the

sparsity of x. This means that (1.2) gives the optimal solution of the following NP-hard problem [21]:

min
x∈Rn

‖x‖0 s.t. Ax = b,(1.3)

where ‖x‖0 counts the number of nonzero elements of x.

Matrix generalizations of (1.3) and (1.2), respectively, are the so-called matrix rank minimization prob-

lem

min
X∈Rm×n

rank(X) s.t. A(X) = d,(1.4)
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and its convex relaxation, the nuclear norm minimization problem:

min
X∈Rm×n

‖X‖∗ s.t. A(X) = d,(1.5)

where A : Rm×n → R
p is a linear operator, d ∈ R

p, and ‖X‖∗ (the nuclear norm of X) is defined as the sum

of singular values of matrix X . A special case of (1.4) is the matrix completion problem:

min
X∈Rm×n

rank(X) s.t. Xij =Mij , ∀(i, j) ∈ Ω,(1.6)

whose convex relaxation is given by:

min
X∈Rm×n

‖X‖∗ s.t. Xij =Mij , ∀(i, j) ∈ Ω.(1.7)

The matrix completion problem has a lot of interesting applications in online recommendation systems,

collaborative filtering [35, 36], etc., including the famous Netflix problem [34]. It has been proved that under

certain conditions, the solutions of the NP-hard problems (1.4) and (1.6) are given respectively by solving

their convex relaxations (1.5) and (1.7), with high probability (see, e.g., [31, 8, 10, 30, 15]).

The linearized Bregman (LB) method was proposed in [42] to solve the basis pursuit problem (1.2). The

method was derived by linearizing the quadratic penalty term in the augmented Lagrangian function that is

minimized on each iteration of the so-called Bregman method introduced in [27] while adding a prox term

to it. The linearized Bregman method was further analyzed in [5, 7, 41] and applied to solve the matrix

completion problem (1.7) in [5].

Throughout of this paper, we will sometimes focus our analysis on the basis pursuit problem (1.2).

However, all of the analysis and results can be easily extended to (1.5) and (1.7). The linearized Bregman

method depends on a single parameter µ > 0 and, as the analysis in [5, 7] shows, actually solves the problem

min
x∈Rn

gµ(x) := ‖x‖1 +
1

2µ
‖x‖22, s.t. Ax = b,(1.8)

rather than the problem (1.2). Recently it was shown in [41] that the solution to (1.8) is also a solution

to problem (1.2) as long as µ is chosen large enough. Furthermore, it was shown in [41] that the linearized

Bregman method can be viewed as a gradient descent method applied to the Lagrangian dual of problem

(1.8). This dual problem is an unconstrained optimization problem of the form

(1.9) min
y∈Rm

Gµ(y),

where the objective function Gµ(y) is differentiable since gµ(x) is strictly convex (see, e.g., [32]). Motivated

by this result, some techniques for speeding up the classical gradient descent method applied to this dual

problem such as taking Barzilai-Borwein (BB) steps [1], and incorporating it into a limited memory BFGS

(L-BFGS) method [18], were proposed in [41]. Numerical results on the basis pursuit problem (1.2) reported

in [41] show that the performance of the linearized Bregman method can be greatly improved by using these

techniques.

Our starting point is also motivated by the equivalence between applying the linearized Bregman method

to (1.2) and solving the Lagrangian dual problem (1.9) by the gradient descent method. Since the gradient of

Gµ(y) can be shown to be Lipschitz continuous, it is well-known that the classical gradient descent method
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with a properly chosen step size will obtain an ǫ-optimal solution to (1.9) (i.e., an approximate solution yk

such that Gµ(y
k)−Gµ(y

∗) ≤ ǫ) in O(1/ǫ) iterations. In [23], Nesterov proposed a technique for accelerating

the gradient descent method for solving problem of the form (1.9) (see, also, [24]), and proved that using this

accelerated method, the number of iterations needed to obtain an ǫ-optimal solution is reduced to O(1/
√
ǫ)

with a negligible change in the work required at each iteration. Nesterov also proved that the O(1/
√
ǫ)

complexity bound is the best bound that one can get if one uses only the first-order information. Based on

the above discussion, we propose an accelerated linearized Bregman (ALB) method for solving (1.8) which

is equivalent to an accelerated gradient descent method for solving the Lagrangian dual (1.9) of (1.8). As

a by-product, we show that the basic and the accelerated linearized Bregman methods require O(1/ǫ) and

O(1/
√
ǫ) iterations, respectively, to obtain an ǫ-optimal solution with respect to the Lagrangian for (1.8).

The rest of this paper is organized as follows. In Section 2 we describe the original Bregman iterative

method, as well as the linearized Bregman method. We motivate the methods and state some previously

obtained theoretical results that establish the equivalence between the LB method and a gradient descent

method for the dual of problem (1.8). We present our accelerated linearized Bregman method in Section 3.

We also provide a theoretical foundation for the accelerated algorithm and prove complexity results for it

and the unaccelerated method. In Section 4, we describe how the LB and ALB methods can be extended

to basis pursuit problems that include additional convex constraints. In Section 5, we report preliminary

numerical results, on several compressed sensing basis pursuit and matrix completion problems. These

numerical results show that our accelerated linearized Bregman method significantly outperforms the basic

linearized Bregman method. We make some conclusions in Section 6.

2. Bregman and Linearized Bregman Methods. The Bregman method was introduced to the

image processing community by Osher et al. in [27] for solving the total-variation (TV) based image

restoration problems. The Bregman distance [4] with respect to convex function J(·) between points u and

v is defined as

Dp
J(u, v) := J(u)− J(v) − 〈p, u− v〉,(2.1)

where p ∈ ∂J(v), the subdifferential of J at v. The Bregman method for solving (1.1) is given below as

Algorithm 1. Note that the updating formula for pk (Step 4 in Algorithm 1) is based on the optimality

conditions of Step 3 in Algorithm 1:

0 ∈ ∂J(xk+1)− pk +A⊤(Axk+1 − b).

This leads to

pk+1 = pk −A⊤(Axk+1 − b).

It was shown in [27, 42] that the Bregman method (Algorithm 1) converges to a solution of (1.1) in a finite

number of steps.

It is worth noting that for solving (1.1), the Bregman method is equivalent to the augmented Lagrangian

method [17, 29, 33] in the following sense.

Theorem 2.1. The sequences {xk} generated by Algorithm 1 and by the augmented Lagrangian method,
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Algorithm 1 Original Bregman Iterative Method

1: Input: x0 = p0 = 0.
2: for k = 0, 1, · · · do

3: xk+1 = argminxD
pk

J (x, xk) + 1

2
‖Ax− b‖2;

4: pk+1 = pk −A⊤(Axk+1 − b);
5: end for

which computes for k = 0, 1, · · ·
{

xk+1 := argminx J(x)− 〈λk, Ax− b〉+ 1

2
‖Ax− b‖2

λk+1 := λk − (Axk+1 − b)
(2.2)

starting from λ0 = 0 are exactly the same.

Proof. From Step 4 of Algorithm 1 and the fact that p0 = 0, it follows that pk = −
∑k

j=1 A
⊤(Axj − b).

From the second equation in (2.2) and using λ0 = 0, we get λk = −∑k
j=1

(Axj − b). Thus, pk = A⊤λk for

all k. Hence it is easy to see that Step 3 of Algorithm 1 is exactly the same as the first equation in (2.2)

and that the xk+1 computed in Algorithm 1 and (2.2) are exactly the same. Therefore, the sequences {xk}
generated by both algorithms are exactly the same.

Note that for J(x) := α‖x‖1, Step 3 of Algorithm 1 reduces to an ℓ1-regularized problem:

min
x

α‖x‖1 − 〈pk, x〉 + 1

2
‖Ax− b‖2.(2.3)

Although there are many algorithms for solving the subproblem (2.3) such as FPC [16], SPGL1 [39], FISTA

[2] etc., it often takes them many iterations to do so. The linearized Bregman method was proposed in [42],

and used in [28, 7, 6] to overcome this difficulty. The linearized Bregman method replaces the quadratic

term 1

2
‖Ax − b‖2 in the objective function that is minimized in Step 3 of Algorithm 1 by its linearization

〈A⊤(Axk − b), x〉 plus a proximal term 1

2µ
‖x− xk‖2. Consequently the updating formula for pk is changed

since the optimality conditions for this minimization step become:

0 ∈ ∂J(xk+1)− pk +A⊤(Axk − b) +
1

µ
(xk+1 − xk).

In Algorithm 2 below we present a slightly generalized version of the original linearized Bregman method

that includes an additional parameter τ that corresponds to the length of a gradient step in a dual problem.

Algorithm 2 Linearized Bregman Method

1: Input: x0 = p0 = 0, µ > 0 and τ > 0.
2: for k = 0, 1, · · · do

3: xk+1 = argminxD
pk

J (x, xk) + τ〈A⊤(Axk − b), x〉+ 1

2µ
‖x− xk‖2;

4: pk+1 = pk − τA⊤(Axk − b)− 1

µ
(xk+1 − xk);

5: end for

In [41], it is shown that when µ‖A‖2 < 2, where ‖A‖ denotes the largest singular value of A, the

iterates of the linearized Bregman method (Algorithm 2 with τ = 1) converge to the solution of the following

regularized version of problem (1.1):

min
x

J(x) +
1

2µ
‖x‖2 s.t. Ax = b.(2.4)
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We prove in Theorem 2.3 below an analogous result for Algorithm 2 for a range of values of τ . However, we

first prove, as in [41], that the linearized Bregman method (Algorithm 2) is equivalent to a gradient descent

method

(2.5) yk+1 := yk − τ∇Gµ(y
k)

applied to the Lagrangian dual

max
y

min
w

{J(w) + 1

2µ
‖w‖2 − 〈y,Aw − b〉}

of (2.4), which we express as the following equivalent minimization problem:

(2.6) min
y

Gµ(y) := −{J(w∗) +
1

2µ
‖w∗‖2 − 〈y,Aw∗ − b〉},

where

w∗ := argmin
w

{J(w) + 1

2µ
‖w‖2 − 〈y,Aw − b〉}.

To show that Gµ(y) is continuously differentiable, we rewrite Gµ(y) as

Gµ(y) = −Φµ(µA
⊤y) +

µ

2
‖A⊤y‖2 − b⊤y,

where

Φµ(v) ≡ min
w

{J(w) + 1

2µ
‖w − v‖2}

is strictly convex and continuously differentiable with gradient ∇Φµ(v) =
v−ŵ
µ

, and ŵ = argminw{J(w) +
1

2µ
‖w − v‖2} (e.g., see Proposition 4.1 in [3]). From this it follows that ∇Gµ(y) = Aw∗ − b. Hence the

gradient method (2.5) corresponds to Algorithm 3 below.

Algorithm 3 Linearized Bregman Method (Equivalent Form)

1: Input: µ > 0, τ > 0 and y0 = τb.
2: for k = 0, 1, · · · do

3: wk+1 := argminw{J(w) + 1

2µ
‖w‖2 − 〈yk, Aw − b〉};

4: yk+1 := yk − τ(Awk+1 − b).;
5: end for

Lemma 2.2 and Theorem 2.3 below generalize Theorem 2.1 in [41] by allowing a step length choice in

the gradient step (2.5) and show that Algorithms 2 and 3 are equivalent. Our proof closely follows the proof

of Theorem 2.1 in [41].

Lemma 2.2. xk+1 computed by Algorithm 2 equals wk+1 computed by Algorithm 3 if and only if

A⊤yk = pk − τA⊤(Axk − b) +
1

µ
xk.(2.7)

Proof. By comparing Step 3 in Algorithms 2 and 3, it is obvious that wk+1 is equal to xk+1 if and only
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if (2.7) holds.

Theorem 2.3. The sequences {xk} and {wk} generated by Algorithms 2 and 3 are the same.

Proof. We prove by induction that equation (2.7) holds for all k ≥ 0. Note that (2.7) holds for k = 0

since p0 = x0 = 0 and y0 = τb. Now let us assume that (2.7) holds for all 0 ≤ k ≤ n− 1; thus by Lemma 2.2

wk+1 = xk+1 for all 0 ≤ k ≤ n− 1. By iterating Step 4 in Algorithm 3 we get

yn = yn−1 − τ(Awn − b) = −
n
∑

j=0

τ(Axj − b).(2.8)

By iterating Step 4 in Algorithm 2 we get

pn = −
n−1
∑

j=0

τA⊤(Axj − b)− 1

µ
xn,

which implies that

pn − τA⊤(Axn − b) +
1

µ
xn = −

k
∑

j=0

τA⊤(Axj − b) = A⊤yn,

where the last equality follows from (2.8); thus by induction (2.7) holds for all k ≥ 0, which implies by

Lemma 2.2 that xk = wk for all k ≥ 0.

Before analyzing Algorithms 2 and 3, we note that by defining vk = A⊤yk and algebraically manipulating

the last two terms in the objective function in Step 3 in Algorithm 3, Steps 3 and 4 in that algorithm can

be replaced by

{

wk+1 := argminw J(w) +
1

2µ
‖w − µvk‖2

vk+1 := vk − τA⊤(Awk+1 − b)
(2.9)

if we set v0 = τA⊤b. Because Algorithms 2 and 3 are equivalent, convergence results for the gradient descent

method can be applied to both of them. Thus we have the following convergence result.

Theorem 2.4. Let J(w) ≡ ‖w‖1. Then Gµ(y) in the dual problem (2.6) is continuously differentiable

and its gradient is Lipschitz continuous with the Lipschitz constant L ≤ µ‖A‖2. Consequently, if the step

length τ < 2

µ‖A‖2 , the sequences {xk} and {wk} generated by Algorithms 2 and 3 converge to the optimal

solution of (2.4).

Proof. When J(x) = ‖x‖1, wk+1 in (2.9) reduces to

wk+1 = µ · shrink(vk, 1),

where the ℓ1 shrinkage operator is defined as

(2.10) shrink(z, α) := sgn(z) ◦max{|z| − α, 0}, ∀z ∈ R
n, α > 0.

Gµ(y) is continuously differentiable since gµ(x) is strictly convex. Since for any point y, ∇Gµ(y) = Aw − b,

where w = µ · shrink(A⊤y, 1), it follows from the fact that the shrinkage operator is non-expansive, i.e.,

‖shrink(s, α) − shrink(t, α)‖ ≤ ‖s− t‖, ∀s, t, α
6



that

‖∇Gµ(y
1)−∇Gµ(y

2)‖ = ‖µ · A · shrink(A⊤y1, 1)− µ · A · shrink(A⊤y2, 1)‖
≤ µ · ‖A‖ · ‖A⊤(y1 − y2)‖
≤ µ‖A‖2‖y1 − y2‖,

for any two points y1 and y2. Thus the Lipschitz constant L of ∇Gµ(·) is bounded above by µ‖A‖2.
When τ < 2

µ‖A‖2 , we have τL < 2 and thus |1 − τL| < 1. It then follows that the gradient descent

method yk+1 = yk − τ∇Gµ(y
k) converges and therefore Algorithms 2 and 3 converge to x∗µ, the optimal

solution of (2.4).

Before developing an accelerated version of the LB algorithm in the next section. We would like to

comment on the similarities and differences between the LB method and Nesterov’s composite gradient

method [26] and the ISTA method [2] applied to problem (1.1) and related problems. The latter algorithms

iterate Step 3 in the LB method (Algorithm 2) with pk = 0, and never compute or update the subgradient

vector pk. More importantly, their methods solve the unconstrained problem

min
x∈Rn

‖x‖1 +
1

2µ
‖Ax− b‖2.

Hence, while these methods and the LB method both linearize the quadratic term ‖Ax− b‖2 while handling

the nonsmooth term ‖x‖1 directly, they are very different.

Similar remarks apply to the accelerated LB method presented in the next section and fast versions of

ISTA and Nesterov’s composite gradient method.

3. The Accelerated Linearized Bregman Algorithm. Based on Theorem 2.3, i.e., the equivalence

between the linearized Bregman method and the gradient descent method, we can accelerate the linearized

Bregman method by techniques used to accelerate the classical gradient descent method. In [41], Yin con-

sidered several techniques such as line search, BB step and L-BFGS, to accelerate the linearized Bregman

method. Here we consider the acceleration technique proposed by Nesterov in [23, 24]. This technique accel-

erates the classical gradient descent method in the sense that it reduces the iteration complexity significantly

without increasing the per-iteration computational effort. For the unconstrained minimization problem (1.9),

Nesterov’s accelerated gradient method replaces the gradient descent method (2.5) by the following iterative

scheme:

{

xk+1 := yk − τ∇Gµ(y
k)

yk+1 := αkx
k+1 + (1− αk)x

k,
(3.1)

where the scalars αk are specially chosen weighting parameters. A typical choice for αk is αk = 3

k+2
. If τ

is chosen so that τ ≤ 1/L, where L is the Lipschitz constant for ∇Gµ(·), Nesterov’s accelerated gradient

method (3.1) obtains an ǫ-optimal solution of (1.9) in O(1/
√
ǫ) iterations, while the classical gradient method

(2.5) takes O(1/ǫ) iterations. Moreover, the per-iteration complexities of (2.5) and (3.1) are almost the same

since computing the gradient ∇Gµ(·) usually dominates the computational cost in each iteration. Nesterov’s

acceleration technique has been studied and extended by many others for nonsmooth minimization problems

and variational inequalities, e.g., see [25, 26, 2, 38, 22, 12, 13, 14].

Our accelerated linearized Bregman method is given below as Algorithm 4. The main difference between

it and the basic linearized Bregman method (Algorithm 2) is that the latter uses the previous iterate xk
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and subgradient pk to compute the new iterate xk+1, while Algorithm 4 uses extrapolations x̃k and p̃k that

are computed as linear combinations of the two previous iterates and subgradients, respectively. Carefully

choosing the sequence of weighting parameters {αk} guarantees an improved rate of convergence.

Algorithm 4 Accelerated Linearized Bregman Method

1: Input: x0 = x̃0 = p̃0 = p0 = 0, µ > 0, τ > 0.
2: for k = 0, 1, · · · do

3: xk+1 = argminxD
p̃k

J (x, x̃k) + τ〈A⊤(Ax̃k − b), x〉+ 1

2µ
‖x− x̃k‖2;

4: pk+1 = p̃k − τA⊤(Ax̃k − b)− 1

µ
(xk+1 − x̃k);

5: x̃k+1 = αkx
k+1 + (1− αk)x

k;
6: p̃k+1 = αkp

k+1 + (1− αk)p
k.

7: end for

In the following, we first establish the equivalence between the accelerated linearized Bregman method

and the corresponding accelerated gradient descent method (3.1), which we give explicitly as (3.2) below

applied to the dual problem (2.6). Based on this, we then present complexity results for both basic and

accelerated linearized Bregman methods. Not surprisingly, the accelerated linearized Bregman method

improves the iteration complexity from O(1/ǫ) to O(1/
√
ǫ).

Theorem 3.1. The accelerated linearized Bregman method (Algorithm 4) is equivalent to the accelerated

dual gradient descent method (3.2) starting from ỹ0 = y0 = τb:











wk+1 := argmin J(w) + 1

2µ
‖w‖2 − 〈ỹk, Aw − b〉

yk+1 := ỹk − τ(Awk+1 − b)

ỹk+1 := αky
k+1 + (1− αk)y

k.

(3.2)

More specifically, the sequence {xk} generated by Algorithm 4 is exactly the same as the sequence {wk}
generated by (3.2).

Proof. Note that the Step 3 of Algorithm 4 is equivalent to

xk+1 := argmin J(x)− 〈p̃k, x〉+ τ〈A⊤(Ax̃k − b), x〉+ 1

2µ
‖x− x̃k‖2.(3.3)

Comparing (3.3) with the first equation in (3.2), it is easy to see that xk+1 = wk+1 if and only if

A⊤ỹk = p̃k + τA⊤(b −Ax̃k) +
1

µ
x̃k.(3.4)

We will prove (3.4) in the following by induction. Note that (3.4) holds for k = 0 since ỹ0 = τb and

x̃0 = p̃0 = 0. As a result, we have x1 = w1. By defining w0 = 0, we also have x0 = w0,

A⊤ỹ1 = A⊤(α0y
1 + (1− α0)A

⊤y0) = α0A
⊤ỹ0 + α0τA

⊤(b −Aw1) + (1 − α0)A
⊤y0.(3.5)

On the other hand,

p1 = p̃0 + τA⊤(b−Ax̃0)− 1

µ
(x1 − x̃0) = A⊤ỹ0 − 1

µ
x1,(3.6)

where for the second equality we used (3.4) for k = 0. Expressing p̃1 and x̃1 in terms of their affine

combinations of p1, p0, x1 and x0, then substituting for p1 using (3.6) and using the fact that x0 = p0 = 0,
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and finally using ỹ0 = τb and (3.5), we obtain,

p̃1 + τA⊤(b −Ax̃1) +
1

µ
x̃1 = α0p

1 + (1− α0)p
0 + α0τA

⊤(b−Ax1) + (1− α0)τA
⊤(b−Ax0) +

1

µ
(α0x

1 + (1 − α0)x
0)

= α0(A
⊤ỹ0 − 1

µ
x1) + α0τA

⊤(b−Ax1) + (1− α0)τA
⊤b+

1

µ
α0x

1

= α0A
⊤ỹ0 + α0τA

⊤(b −Ax1) + (1 − α0)A
⊤y0

= α0A
⊤ỹ0 + α0τA

⊤(b −Aw1) + (1− α0)A
⊤y0

= A⊤ỹ1.

Thus we proved that (3.4) holds for k = 1. Now let us assume that (3.4) holds for 0 ≤ k ≤ n − 1, which

implies xk = wk, ∀0 ≤ k ≤ n since x0 = w0. We will prove that (3.4) holds for k = n.

First, note that

pn = p̃n−1 + τA⊤(b−Ax̃n−1)− 1

µ
(xn − x̃n−1) = A⊤ỹn−1 − 1

µ
xn,(3.7)

where the first equality is from Step 4 of Algorithm 4 and the second equality is from (3.4) for k = n − 1.

From Step 6 of Algorithm 4 and (3.7), we have

p̃n = αn−1p
n + (1− αn−1)p

n−1

= αn−1(A
⊤ỹn−1 − 1

µ
xn) + (1 − αn−1)(A

⊤ỹn−2 − 1

µ
xn−1)

= αn−1A
⊤ỹn−1 + (1 − αn−1)A

⊤ỹn−2 − 1

µ
x̃n,

(3.8)

where the last equality uses Step 5 of Algorithm 4. On the other hand, from (3.2) we have

A⊤ỹn = A⊤(αn−1y
n + (1 − αn−1)y

n−1)

= αn−1A
⊤(ỹn−1 + τ(b −Awn)) + (1− αn−1)A

⊤(ỹn−2 + τ(b −Awn−1))

= αn−1A
⊤ỹn−1 + (1− αn−1)A

⊤ỹn−2 + τA⊤[b−A(αn−1x
n + (1− αn−1)x

n−1)]

= αn−1A
⊤ỹn−1 + (1− αn−1)A

⊤ỹn−2 + τA⊤(b−Ax̃n),

(3.9)

where the third equality is from wn = xn and wn−1 = xn−1, the last equality is from Step 5 of Algorithm 4.

Combining (3.8) and (3.9) we get that (3.4) holds for k = n.

Like the linearized Bregman, we can also use a simpler implementation for accelerated linearized Bregman

method in which the main computation at each step is a proximal minimization. Specifically, (3.2) is

equivalent to the following three steps.











wk+1 := argmin J(w) + 1

2µ
‖w − µṽk‖2

vk+1 := ṽk − τA⊤(Awk+1 − b)

ṽk+1 := αkv
k+1 + (1− αk)v

k

(3.10)

As before this follows from letting vk = A⊤yk and ṽk = A⊤ỹk and completing the square in the objective

function in the first equation of (3.2).

Next we prove iteration complexity bounds for both basic and accelerated linearized Bregman algorithms.

Since these algorithms are standard gradient descent methods applied to the Lagrangian dual function and

these results have been well established, our proofs will be quite brief.
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Theorem 3.2. Let the sequence {xk} be generated by the linearized Bregman method (Algorithm 2)

and (x∗, y∗) be the pair of optimal primal and dual solutions for Problem (2.4). Let {yk} be the sequence

generated by Algorithm 3 and suppose the step length τ ≤ 1

L
, where L is the Lipschitz constant for ∇Gµ(y).

Then for the Lagrangian function

Lµ(x, y) = J(x) +
1

2µ
‖x‖2 − 〈y,Ax− b〉,(3.11)

we have

Lµ(x
∗, y∗)− Lµ(x

k+1, yk) ≤ ‖y∗ − y0‖2
2τk

.(3.12)

Thus, if we further have τ ≥ β/L, where 0 < β ≤ 1, then (xk+1, yk) is an ǫ-optimal solution to Problem

(2.4) with respect to the Lagrangian function if k ≥ ⌈C/ǫ⌉, where C := L‖y∗−y0‖2

2β
.

Proof. From (2.6) we get

Gµ(y
k) = −Lµ(x

k+1, yk).(3.13)

By using the convexity of function Gµ(·) and the Lipschitz continuity of the gradient ∇Gµ(·), we get for
any y,

Gµ(y
k)−Gµ(y) ≤ Gµ(y

k−1) + 〈∇Gµ(y
k−1), yk − yk−1〉+ L

2
‖yk − yk−1‖2 −Gµ(y)

≤ Gµ(y
k−1) + 〈∇Gµ(y

k−1), yk − yk−1〉+ 1

2τ
‖yk − yk−1‖2 −Gµ(y)

≤ 〈∇Gµ(y
k−1), yk−1 − y〉+ 〈∇Gµ(y

k−1), yk − yk−1〉+ 1

2τ
‖yk − yk−1‖2

= 〈∇Gµ(y
k−1), yk − y〉+ 1

2τ
‖yk − yk−1‖2

= 1

τ
〈yk−1 − yk, yk − y〉+ 1

2τ
‖yk − yk−1‖2

≤ 1

2τ
(‖y − yk−1‖2 − ‖y − yk‖2).

(3.14)

Setting y = yk−1 in (3.14), we obtain Gµ(y
k) ≤ Gµ(y

k−1) and thus the sequence {Gµ(y
k)} is non-increasing.

Moreover, summing (3.14) over k = 1, 2, . . . , n with y = y∗ yields

n(Gµ(y
n)−Gµ(y

∗)) ≤
n
∑

k=1

(Gµ(y
k)−Gµ(y

∗)) ≤ 1

2τ
(‖y∗ − y0‖2 − ‖y∗ − yn‖2) ≤ 1

2τ
‖y∗ − y0‖2,

and this implies (3.12).

Before we analyze the iteration complexity of the accelerated linearized Bregman method, we introduce

a lemma from [38] that we will use in our analysis.

Lemma 3.3 (Property 1 in [38]). For any proper lower semicontinuous function ψ : Rn → (−∞,+∞]

and any z ∈ R
n, if

z+ = argmin
x

{ψ(x) + 1

2
‖x− z‖2},

then

ψ(x) +
1

2
‖x− z‖2 ≥ ψ(z+) +

1

2
‖z+ − z‖2 + 1

2
‖x− z+‖2, ∀x ∈ R

n.
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The following theorem gives an iteration-complexity result for the accelerated linearized Bregmanmethod.

Our proof of this theorem closely follows the proof of Proposition 2 in [38].

Theorem 3.4. Let the sequence {xk} be generated by accelerated linearized Bregman method (Algorithm

4) and (x∗, y∗) be the optimal primal and dual variable for Problem (2.4). Let {αk} be chosen as

αk−1 = 1 + θk(θ
−1

k−1
− 1),(3.15)

where

θ−1 := 1, and θk =
2

k + 2
, ∀k ≥ 0.(3.16)

Let the sequence {yk} be defined as in (3.2) and the step length τ ≤ 1

L
, where L is the Lipschitz constant of

∇Gµ(y) and Gµ(·) is defined by (3.13). We have

Gµ(y
k)−Gµ(y

∗) ≤ 2‖y∗ − y0‖2
τk2

.(3.17)

Thus, if we further have τ ≥ β/L, where 0 < β ≤ 1, then (xk+1, yk) is an ǫ-optimal solution to Problem

(2.4) with respect to the Lagrangian function (3.11) if k ≥ ⌈
√

C/ǫ⌉, where C := 2L‖y∗−y0‖2

β
.

Proof. Let

(3.18) zk = yk−1 + θ−1
k−1

(yk − yk−1)

and denote the linearization of Gµ(y) as

(3.19) lGµ
(x; y) := Gµ(y) + 〈∇Gµ(y), x− y〉 ≤ Gµ(x).

Therefore the second equality in (3.2) is equivalent to

yk+1 := argmin
y

Gµ(ỹ
k) + 〈∇Gµ(ỹ

k), y − ỹk〉+ 1

2τ
‖y − ỹk‖2

= argmin
y

lGµ
(y; ỹk) +

1

2τ
‖y − ỹk‖2.
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Define ŷk := (1 − θk)y
k + θky

∗, we have

Gµ(y
k+1) ≤ Gµ(ỹ

k) + 〈∇Gµ(ỹ
k), yk+1 − ỹk〉+ L

2
‖yk+1 − ỹk‖2

(3.20)

≤ lGµ
(yk+1; ỹk) +

1

2τ
‖yk+1 − ỹk‖2

≤ lGµ
(ŷk; ỹk) +

1

2τ
‖ŷk − ỹk‖2 − 1

2τ
‖ŷk − yk+1‖2

= lGµ
((1− θk)y

k + θky
∗; ỹk) +

1

2τ
‖(1− θk)y

k + θky
∗ − ỹk‖2 − 1

2τ
‖(1− θk)y

k + θky
∗ − yk+1‖2

= lGµ
((1− θk)y

k + θky
∗; ỹk) +

θ2k
2τ

‖y∗ + θ−1

k (yk − ỹk)− yk‖2 − θ2k
2τ

‖y∗ + θ−1

k (yk − yk+1)− yk‖2

= lGµ
((1− θk)y

k + θky
∗; ỹk) +

θ2k
2τ

‖y∗ − zk‖2 − θ2k
2τ

‖y∗ − zk+1‖2

= (1− θk)lGµ
(yk; ỹk) + θklGµ

(y∗; ỹk) +
θ2k
2τ

‖y∗ − zk‖2 − θ2k
2τ

‖y∗ − zk+1‖2

≤ (1− θk)Gµ(y
k) + θkGµ(y

∗) +
θ2k
2τ

‖y∗ − zk‖2 − θ2k
2τ

‖y∗ − zk+1‖2,

where the second inequality is from (3.19) and τ ≤ 1/L, the third inequality uses Lemma 3.3 with ψ(x) :=

τlGµ
(x; ỹk), the third equality uses (3.18), (3.2) and (3.15) and the last inequality uses (3.19).

Therefore we get

1

θ2k
(Gµ(y

k+1)−Gµ(y
∗)) ≤ 1− θk

θ2k
(Gµ(y

k)−Gµ(y
∗)) +

1

2τ
‖y − zk‖2 − 1

2τ
‖y − zk+1‖2.

From (3.16), it is easy to show that 1−θk
θ2

k

≤ 1

θ2

k−1

for all k ≥ 0. Thus (3.20) implies that

(3.21)
1− θk+1

θ2k+1

(Gµ(y
k+1)−Gµ(y

∗)) ≤ 1− θk
θ2k

(Gµ(y
k)−Gµ(y

∗)) +
1

2τ
‖y − zk‖2 − 1

2τ
‖y − zk+1‖2.

Summing (3.21) over k = 0, 1, . . . , n− 1, we get

1− θn
θ2n

(Gµ(y
n)−Gµ(y

∗)) ≤ 1

2τ
‖y∗ − z0‖2 =

1

2τ
‖y∗ − y0‖2,

which immediately implies (3.17).

Remark 3.5. The proof technique and the choice of θk used here are suggested in [38] for accelerating

the basic algorithm. Other choices of θk can be found in [23, 24, 2, 38]. They all work here and give the

same order of iteration complexity.

4. Extension to Problems with Additional Convex Constraints. We now consider extensions

of both the LB and ALB methods to problems of the form

min
x∈X

J(x) s.t Ax = b,(4.1)

12



where X is a nonempty closed convex set in R
n. It is not clear how to extend the LB and ALB methods

(Algorithms 2 and 4) to problem (4.1) since we can no longer rely on the relationship

0 ∈ ∂J(xk+1)− pk +A⊤(Axk − b) +
1

µ
(xk+1 − xk)

to compute a subgradient pk+1 ∈ ∂J(xk+1). Fortunately, the Lagrangian dual gradient versions of these

algorithms do not suffer from this difficulty. All that is required to extend them to problem (4.1) is to

include the constraint w ∈ X in the minimization step in these algorithms. Note that the gradient of

Φ̂µ(v) = min
w∈X

{J(w) + 1

2µ
‖w − v‖2}

remains the same. Also it is clear that the iteration complexity results given in Theorems 3.2 and 3.4 apply

to these algorithms as well.

Being able to apply the LB and ALB methods to problems of the form of (4.1) greatly expands their

usefulness. One immediate extension is to compressed sensing problems in which the signal is required to

have nonnegative components. Also (4.1) directly includes all linear programs. Applying the LB and ALB

to such problems, with the goal of only obtaining approximated optimal solutions, will be the subject of a

future paper.

5. Numerical Experiments. In this section, we report some numerical results that demonstrate

the effectiveness of the accelerated linearized Bregman algorithm. All numerical experiments were run in

MATLAB 7.3.0 on a Dell Precision 670 workstation with an Intel Xeon(TM) 3.4GHZ CPU and 6GB of

RAM.

5.1. Numerical Results on Compressed Sensing Problems. In this subsection, we compare the

performance of the accelerated linearized Bregman method against the performance of the basic linearized

Bregman method on a variety of compressed sensing problems of the form (1.2).

We use three types of sensing matrices A ∈ R
m×n. Type (i): A is a standard Gaussian matrix generated

by the randn(m,n) function in MATLAB. Type (ii): A is first generated as a standard Gaussian matrix and

then normalized to have unit-norm columns. Type (iii): The elements of A are sampled from a Bernoulli

distribution as either +1 or −1. We use two types of sparse solutions x∗ ∈ R
n with sparsity s (i.e., the

number of nonzeros in x∗). The positions of the nonzero entries of x∗ are selected uniformly at random, and

each nonzero value is sampled either from (i) standard Gaussian (the randn function in MATLAB) or from

(ii) [−1, 1] uniformly at random (2 ∗ rand − 1 in MATLAB).

For compressed sensing problems, where J(x) = ‖x‖1, the linearized Bregman method reduces to the

two-line algorithm:

{

xk+1 := µ · shrink(vk, 1)
vk+1 := vk + τA⊤(b−Axk+1),

where the ℓ1 shrinkage operator is defined in (2.10). Similarly, the accelerated linearized Bregman can be

written as:











xk+1 := µ · shrink(ṽk, 1)
vk+1 := ṽk + τAT (b−Axk+1)

ṽk+1 := αkv
k+1 + (1 − αk)v

k.
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Both algorithms are very simple to program and involve only one Ax and one A⊤y matrix-vector multipli-

cation in each iteration.

We ran both LB and ALB with the seed used for generating random number in MATLAB setting as 0.

Here we set n = 2000,m = 0.4 × n, s = 0.2×m,µ = 5 for all data sets. We set τ = 2

µ‖A‖2 . We terminated

the algorithms when the stopping criterion

(5.1) ‖Axk − b‖/‖b‖ < 10−5

was satisfied or the number of iterations exceeded 5000. Note that (5.1) was also used in [41]. We report

the results in Table 5.1.

Table 5.1
Compare linearized Bregman (LB) with accelerated linearized Bregman (ALB)

Standard Gaussian matrix A Number of Iterations Relative error ‖x− x∗‖/‖x∗‖
Type of x∗ n(m = 0.4n, s = 0.2m) LB ALB LB ALB
Gaussian 2000 5000+ 330 5.1715e-3 1.4646e-5
Uniform 2000 1681 214 2.2042e-5 1.5241e-5
Normalized Gaussian matrix A Number of Iterations Relative error ‖x− x∗‖/‖x∗‖

Type of x∗ n(m = 0.4n, s = 0.2m) LB ALB LB ALB
Gaussian 2000 2625 234 3.2366e-5 1.2664e-5
Uniform 2000 5000+ 292 1.2621e-2 1.5629e-5

Bernoulli +1/-1 matrix A Number of Iterations Relative error ‖x− x∗‖/‖x∗‖
Type of x∗ n(m = 0.4n, s = 0.2m) LB ALB LB ALB
Gaussian 2000 2314 222 4.2057e-5 1.0812e-5
Uniform 2000 5000+ 304 1.6141e-2 1.5732e-5

In Table 5.1, we see that for three out of six problems, LB did not achieve the desired convergence

criterion within 5000 iterations, while ALB satisfied this stopping criterion in less than 330 iterations on

all six problems. To further demonstrate the significant improvement the ALB achieved over LB, we plot

in Figures 5.1, 5.2 and 5.3 the Euclidean norms of the residuals and the relative errors as a function of the

iteration number that were obtained by LB and ALB applied to the same data sets. These figures also depict

the non-monotonic behavior of the ALB method.

5.2. Numerical Results on Matrix Completion Problems. There are fast implementations of

linearized Bregman [5] and other solvers [20, 37, 19, 40] for solving matrix completion problems. We do not

compare the linearized Bregman and our accelerated linearized Bregman algorithms with these fast solvers

here. Rather our tests are focused only on comparing ALB with LB and verifying that the acceleration

actually occurs in practice for matrix completion problems.

The nuclear norm matrix completion problem (1.7) can be rewritten as

min
X

‖X‖∗ s.t. PΩ(X) = PΩ(M),(5.2)

where [PΩ(X)]ij = Xij if (i, j) ∈ Ω and [PΩ(X)]ij = 0 otherwise. When the convex function J(·) is the

nuclear norm of matrix X , the Step 3 of Algorithm 2 with inputs Xk, P k can be reduced to

Xk+1 := arg min
X∈Rm×n

µ‖X‖∗ +
1

2
‖X − (Xk − µ(τPΩ(PΩX

k − PΩ(M))− P k))‖2F .(5.3)
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Fig. 5.1. Gaussian matrix A, Left: Gaussian x∗, Right: Uniform x∗
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Fig. 5.2. Normalized Gaussian matrix A, Left: Gaussian x∗, Right: Uniform x∗
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Fig. 5.3. Bernoulli matrix A, Left: Gaussian x∗, Right: Uniform x∗
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It is known (see, e.g., [5, 20]) that (5.3) has the closed-form solution,

Xk+1 = Shrink(Xk − µ(τPΩ(PΩX
k − PΩ(M))− P k), µ),

where the matrix shrinkage operator is defined as

Shrink(Y, γ) := UDiag(max(σ − γ, 0))V ⊤,

and Y = UDiag(σ)V ⊤ is the singular value decomposition (SVD) of matrix Y . Thus, a typical iteration

of the linearized Bregman method (Algorithm 2), with initial inputs X0 = P 0 = 0, for solving the matrix

completion problem (5.2) can be summarized as

{

Xk+1 := Shrink(Xk − µ(τPΩ(PΩX
k − PΩ(M))− P k), µ)

P k+1 := P k − τ(PΩX
k − PΩM)− (Xk+1 −Xk)/µ.

(5.4)

Similarly, a typical iteration of the accelerated linearized Bregman method (Algorithm 4), with initial inputs

X0 = P 0 = X̃0 = P̃ 0 = 0, for solving the matrix completion problem (5.2) can be summarized as























Xk+1 := Shrink(Xk − µ(τPΩ(PΩX
k − PΩ(M))− P k), µ)

P k+1 := P̃ k − τ(PΩX̃
k − PΩM)− (Xk+1 − X̃k)/µ

X̃k+1 := αkX
k+1 + (1− αk)X

k

P̃ k+1 := αkP
k+1 + (1− αk)P

k,

(5.5)

where the sequence αk is chosen according to Theorem 3.4.

We compare the performance of LB and ALB on a variety of matrix completion problems. We created

matrices M ∈ R
n×n with rank r by the following procedure. We first created standard Gaussian matrices

ML ∈ R
n×r and MR ∈ R

n×r and then we set M =MLM
⊤
R . The locations of the p known entries in M were

sampled uniformly, and the values of these p known entries were drawn from an iid Gaussian distribution.

The ratio p/n2 between the number of measurements and the number of entries in the matrix is denoted

by “SR” (sampling ratio). The ratio between the dimension of the set of n× n rank r matrices, r(2n − r),

and the number of samples p, is denoted by “FR”. In our tests, we fixed FR to 0.2 and 0.3 and r to 10.

We tested five matrices with dimension n = 100, 200, 300, 400, 500 and set the number p to r(2n − r)/FR.

The random seed for generating random matrices in MATLAB was set to 0. µ was set to 5n (a heuristic

argument for this choice can be found in [5]). We set the step length τ to 1/µ since for matrix completion

problems ‖PΩ‖ = 1. We terminated the code when the relative error between the residual and the true

matrix was less than 10−4, i.e.,

‖PΩ(X
k)− PΩ(M)‖F /‖PΩ(M)‖F < 10−4.(5.6)

Note that this stopping criterion was used in [5]. We also set the maximum number of iteration to 2000.

We report the number of iterations needed by LB and ALB to reach (5.6) in Table 5.2. Note that

performing the shrinkage operation, i.e., computing an SVD, dominates the computational cost in each

iteration of LB and ALB. Thus, the per-iteration complexities of LB and ALB are almost the same and it

is reasonable to compare the number of iterations needed to reach the stopping criterion. We report the

relative error err := ‖Xk −M‖F /‖M‖F between the recovered matrix Xk and the true matrix M in Table
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Fig. 5.4. Comparison of LB and ALB on matrix completion problems with rank = 10, FR = 0.2

5.2. We see from Table 5.2 that ALB needed significantly fewer iterations to meet the stopping criterion

(5.6).

In Figures 5.4 and 5.5, we plot the Frobenius norms of the residuals and the relative errors obtained by

LB and ALB for iteration 1-500 for the tests involving matrices with dimension n = 200, 300, 400 and 500.

Note that the non-monotonicity of ALB is far less pronounced on these problems.

Table 5.2
Comparison between LB and ALB on Matrix Completion Problems

FR = 0.2, rank = 10 FR = 0.3, rank = 10
n SR iter-LB err-LB iter-ALB err-ALB SR iter-LB err-LB iter-ALB err-ALB
100 0.95 85 1.07e-4 63 1.11e-4 0.63 294 1.75e-4 163 1.65e-4
200 0.49 283 1.62e-4 171 1.58e-4 0.33 1224 3.76e-4 289 1.83e-4
300 0.33 466 1.64e-4 261 1.60e-4 0.22 2000+ 3.59e-3 406 1.93e-4
400 0.25 667 1.79e-4 324 1.65e-4 0.17 2000+ 1.12e-2 455 1.80e-4
500 0.20 831 1.76e-4 398 1.65e-4 0.13 2000+ 3.14e-2 1016 7.49e-3
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Fig. 5.5. Comparison of LB and ALB on matrix completion problems with rank = 10, FR = 0.3

6. Conclusions. In this paper, we analyzed for the first time the iteration complexity of the linearized

Bregman method. Specifically, we show that for a suitably chosen step length, the method achieves a value

of the Lagrangian of a quadratically regularized version of the basis pursuit problem that is within ǫ of the

optimal value in O(1/ǫ) iterations. We also derive an accelerated version of the linearized Bregman method

whose iteration complexity is reduced to O(1/
√
ǫ) and present numerical results on basis pursuit and matrix

completion problems that illustrate this speed-up.
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