Skip to main content
Log in

A Critical Study of the Compressible Lattice Boltzmann Methods for Riemann Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, the discrete velocity model proposed by Kataoka and Tsutahara (Phys. Rev. E 69(5):056702, 2004) for simulating inviscid flows is employed. Three approaches for improving the stability and the accuracy of this model, especially for high Mach numbers, are suggested and implemented in this research. First, the TVD scheme (Harten in J. Comput. Phys. 49:357–393, 1983) is used for space discretization of the convective term in the Lattice Boltzmann equation. Next, the modified Lax-Wendroff with artificial viscosity is employed to increase the robustness of the method in supersonic flows. Finally, a combination of TVD and the 2nd order derivative of the distribution function is employed using a differentiable switch. It is found that the recent technique is a more suitable approach for a wide range of Mach numbers. Moreover, the WENO scheme for space discretization has been applied and compared with these newly applied methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models—An Introduction. Springer, Berlin (2000)

    MATH  Google Scholar 

  2. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice gas automata for the Navier–Stokes equations. Phys. Rev. Lett. 56, 1505–1508 (1986)

    Article  Google Scholar 

  3. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, New York (2001)

    MATH  Google Scholar 

  4. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145 (1992)

    Article  Google Scholar 

  5. McNamara, G., Zanetti, G.: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61, 2332–2335 (1988)

    Article  Google Scholar 

  6. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component system. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  7. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. (1998)

  8. Reider, M.B., Sterling, J.D.: Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier–Stokes equations. Comput. Fluids 24(4), 459–467 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. He, X.Y., Luo, L.S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56(6), 6811–6817 (1997)

    Article  Google Scholar 

  10. Xiaoyi, H., Li-Shi, L.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56(6), 6811–6817 (1997)

    Article  Google Scholar 

  11. Tosi, F., Ubertini, S., Succi, S., Chen, H., Karlin, I.V.: Numerical stability of entropic versus positivity-enforcing lattice Boltzmann schemes. Math. Comput. Simul. 72, 227–231 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y., Shock, R., Zhang, R., Chen, H.: Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method. J. Fluid Mech. 519, 273–300 (2004)

    Article  MATH  Google Scholar 

  13. Sofonea, V., Lamura, A., Gonnella, G., Cristea, A.: Finite-difference lattice Boltzmann model with flux limiters for liquid-vapor systems. Phys. Rev. E 70, 046702 (2004)

    Article  Google Scholar 

  14. Chen, F., Xu, A.G., Zhang, G.C., Li, Y.J.: Flux limiter lattice Boltzmann for compressible flows. Commun. Theor. Phys. 56, 333–338 (2011)

    Article  MATH  Google Scholar 

  15. Gan, Y.B., Xu, A.G., Zhang, G.C., Li, Y.J.: Flux limiter lattice Boltzmann scheme approach to compressible flows with flexible specific-heat ratio and Prandtl number. Commun. Theor. Phys. 56, 490–498 (2011)

    Article  MATH  Google Scholar 

  16. Brownlee, R.A., Gorban, A.N., Levesley, J.: Stability and stabilization of the lattice Boltzmann method. Phys. Rev. E 75, 036711 (2007)

    Article  MathSciNet  Google Scholar 

  17. Watari, M.: Finite difference lattice Boltzmann method with arbitrary specific heat ratio applicable to supersonic flow simulations. Physica A 382, 502–522 (2007)

    Article  Google Scholar 

  18. Alexander, F.J., Chen, H., Chen, S., Doolen, G.D.: Lattice Boltzmann model for compressible fluids. Phys. Rev. A 1992, 46 (1967–1970)

    Google Scholar 

  19. Kim, C., Xu, K., Martinelli, L., Jameson, A.: Analysis and implementation of the gas kinetic BGK scheme for computing inhomogeneous fluid behavior. Int. J. Numer. Methods Fluids 25, 21–49 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kotelnikov, A.D., Montgomery, D.C.: A kinetic method for computing inhomogeneous fluid behavior. J. Comput. Phys. 134, 364–388 (1997)

    Article  MATH  Google Scholar 

  21. Shouxin, H., Guangwu, Y., Weiping, S.: A lattice Boltzmann model for compressible perfect gas. Acta Mech. Sin., Engl. Ser. 13(3) (1997)

  22. Renda, A., Bella, G., Succi, S., Karlin, I.V.: Thermo hydrodynamics lattice BGK schemes with non-perturbative equilibrium. Europhys. Lett. 41, 279–283 (1998)

    Article  Google Scholar 

  23. Vahala, G., Pavlo, P., Vahala, L., Martys, N.S.: Thermal lattice Boltzmann models (TLBM) for compressible flows. Int. J. Mod. Phys. C 9, 1247–1261 (1998)

    Article  Google Scholar 

  24. Yan, G.W., Chen, Y.S., Hu, S.X.: Simple lattice Boltzmann method for simulating flows with shock wave. Phys. Rev. E 59, 454 (1999)

    Article  Google Scholar 

  25. De Cicco, M., Succi, S., Bella, G.: Nonlinear stability of compressible thermal lattice BGK model. SIAM J. Sci. Comput. 21, 366–377 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Palmer, B.J., Recto, D.R.: Lattice Boltzmann algorithm for simulating thermal flow in compressible fluids. J. Comput. Phys. 161, 1–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yan, G.W., Song, M.: Recovery of the solutions using a lattice Boltzmann model. Chin. Phys. Lett. 16, 109–110 (1999)

    Article  Google Scholar 

  28. Sun, C.: Adaptive lattice Boltzmann model for compressible flows: viscous and conductive properties. Phys. Rev. E 61, 2645–2653 (2000)

    Article  Google Scholar 

  29. Sun, C., Hsu, A.T.: Three-dimensional lattice Boltzmann model for compressible flows. Phys. Rev. E 68, 016303 (2003)

    Article  MathSciNet  Google Scholar 

  30. Sun, C., Hsu, A.: Multi-level lattice Boltzmann model on square lattice for compressible flows. Comput. Fluids 33, 1363–1385 (2004)

    Article  MATH  Google Scholar 

  31. Mason, R.J.: A multi-speed compressible lattice-Boltzmann model. J. Stat. Phys. 107(1/2) (2005)

  32. Yan, G., Dong, Y., Liu, Y.: An implicit Lagrangian lattice Boltzmann method for the compressible flows. Int. J. Numer. Methods Fluids 51, 1407–1418 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yan, G., Zhang, J., Liu, Y., Dong, Y.: A multi-energy-level lattice Boltzmann model for the compressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 55, 41–56 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yan, G., Zhang, J.: A multi-entropy-level lattice Boltzmann model for the one-dimensional compressible Euler equations. Int. J. Comput. Fluid Dyn. 22(6), 383–392 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, J., Yan, G., Shi, X., Dong, Y.: A lattice Boltzmann model for the compressible Euler equations with second-order accuracy. Int. J. Numer. Methods Fluids 60, 95–117 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ji, C.Z., Shu, C., Zhao, N.: A lattice Boltzmann method-based flux solver and its application to solve shock tube problem. Mod. Phys. Lett. B 23, 313–316 (2009)

    Article  MATH  Google Scholar 

  37. Xu, A.: Two-dimensional finite-difference lattice Boltzmann method for the complete Navier-Stokes equations of binary fluids. Europhys. Lett. 69, 214 (2005)

    Article  Google Scholar 

  38. Xu, A.: Finite-difference lattice-Boltzmann methods for binary fluids. Phys. Rev. E 71, 066706 (2005)

    Article  Google Scholar 

  39. Xu, A.: Two-dimensional lattice Boltzmann methods based on Sirovich’s kinetic theory. Prog. Theor. Phys. 162, 197 (2006)

    Article  Google Scholar 

  40. Watari, M., Tsutahara, M.: Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy. Phys. Rev. E 67, 036306 (2003)

    Article  Google Scholar 

  41. Kataoka, T., Tsutahara, M.: Lattice Boltzmann method for the compressible Navier–Stokes equations with flexible specific-heat ratio. Phys. Rev. E 69(3), 035701 (2004)

    Article  MathSciNet  Google Scholar 

  42. Kataoka, T., Tsutahara, M.: Lattice Boltzmann method for the compressible Euler equations. Phys. Rev. E 69(5), 056702 (2004)

    Article  MathSciNet  Google Scholar 

  43. Watari, M., Tsutahara, M.: Supersonic flow simulations by a three-dimensional multispeed thermal model of the finite difference lattice Boltzmann method. Physica A 364, 129–144 (2006)

    Article  Google Scholar 

  44. Gan, Y., Xu, A., Zhang, G., Yu, X., Li, Y.: Two-dimensional lattice Boltzmann model for compressible flows with high Mach number. Physica A 387, 1721–1732 (2008)

    Article  Google Scholar 

  45. Laney, C.B.: Computational Gasdynamics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  46. Pan, X.F., Xu, A., Zhang, G., Jiang, S.: Lattice Boltzmann approach to high-speed compressible flows. Int. J. Mod. Phys. C 3, 14 (2008)

    Google Scholar 

  47. Chen, F., Xu, A.G., Zhang, G.C., Gan, Y.B., Cheng, T., Li, Y.J.: Highly efficient lattice Boltzmann model for compressible fluids: two-dimensional case. Commun. Theor. Phys. 52, 681–693 (2009) (Beijing, China)

    Article  MATH  Google Scholar 

  48. Wang, Y., He, Y.L., Zhao, T.S., Tang, G.H., Tao, W.Q.: Implicit-explicit finite-difference lattice Boltzmann method for compressible flows. Int. J. Mod. Phys. C 18(12), 1961–1983 (2007)

    Article  MATH  Google Scholar 

  49. Zhang, H.X.: Non-oscillatory and non-free-parameter dissipation difference scheme. Acta Aerodyn. Sin. 6, 143–165 (1988)

    Google Scholar 

  50. Pieraccini, S., Puppo, G.: Implicit explicit schemes for BGK kinetic equations. J. Sci. Comput. 32, 1 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Li, Q., He, Y.L., Wang, Y., Tao, W.Q.: Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations. Phys. Rev. E 76, 056705 (2007)

    Article  MathSciNet  Google Scholar 

  52. Qu, K., Shu, C., Chew, Y.T.: Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number. Phys. Rev. E 75, 036706 (2007)

    Article  MathSciNet  Google Scholar 

  53. He, Y.L., Wang, Y., Li, Q., Tao, W.Q.: Simulating compressible flows with shock waves using the finite-difference lattice Boltzmann method. Prog. Comput. Fluid Dyn. 9, 3–5 (2009)

    MathSciNet  Google Scholar 

  54. Chen, F., Xu, A., Zhang, G., Li, Y.: Multiple-relaxation-time lattice Boltzmann model for compressible fluids. Phys. Lett. A 375, 2129–2139 (2011)

    Article  Google Scholar 

  55. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  56. Liu, R., Shu, Q.: Some New Methods in Computational Fluid Dynamics. Science Press, Beijing (2003) (in Chinese)

    Google Scholar 

  57. Nejat, A., Ollivier-Gooch, C.: A high-order accurate unstructured finite volume Newton-Krylov algorithm for inviscid compressible flows. J. Comput. Phys. 227(4), 2582–2609 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Nejat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nejat, A., Abdollahi, V. A Critical Study of the Compressible Lattice Boltzmann Methods for Riemann Problem. J Sci Comput 54, 1–20 (2013). https://doi.org/10.1007/s10915-012-9596-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9596-5

Keywords

Navigation