Skip to main content
Log in

A Multigrid Method on Non-Graded Adaptive Octree and Quadtree Cartesian Grids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In order to develop efficient numerical methods for solving elliptic and parabolic problems where Dirichlet boundary conditions are imposed on irregular domains, Chen et al. (J. Sci. Comput. 31(1):19–60, 2007) presented a methodology that produces second-order accurate solutions with second-order gradients on non-graded quadtree and octree data structures. These data structures significantly reduce the number of computational nodes while still allowing for the resolution of small length scales. In this paper, we present a multigrid solver for this framework and present numerical results in two and three spatial dimensions that demonstrate that the computational time scales linearly with the number of nodes, producing a very efficient solver for elliptic and parabolic problems with multiple length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen, H., Min, C., Gibou, F.: A supra-convergent finite difference scheme for the Poisson and heat equations on irregular domains and non-graded adaptive Cartesian grids. J. Sci. Comput. 31(1), 19–60 (2007). doi:10.1007/s10915-006-9122-8

    Article  MathSciNet  Google Scholar 

  2. Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984). doi:10.1016/0021-9991(84)90073-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Popinet, S.: Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190, 572–600 (2003). doi:10.1016/S0021-9991(03)00298-5

    Article  MathSciNet  MATH  Google Scholar 

  4. Min, C., Gibou, F., Ceniceros, H.: A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids. J. Comput. Phys. 218, 123–140 (2006). doi:10.1016/j.jcp.2006.01.046

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, H., Min, C., Gibou, F.: A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate. J. Comput. Phys. 228(16), 5803–5818 (2009). doi:10.1016/j.jcp.2009.04.044

    Article  MATH  Google Scholar 

  6. Min, C., Gibou, F.: A second order accurate projection method for the incompressible Navier–Stokes equation on non-graded adaptive grids. J. Comput. Phys. 219, 912–929 (2006). doi:10.1016/j.jcp.2006.07.019

    Article  MathSciNet  MATH  Google Scholar 

  7. Min, C., Gibou, F.: A second order accurate level set method on non-graded adaptive Cartesian grids. J. Comput. Phys. 225, 300–321 (2007). doi:10.1016/j.jcp.2006.11.034

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977). doi:10.1090/S0025-5718-1977-0431719-X

    Article  MATH  Google Scholar 

  9. Briggs, W., Henson, V.E., McCormick, S.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000). ISBN 0-89871-462-1

    Book  MATH  Google Scholar 

  10. Sampath, R.S., Biros, G.: A parallel geometric multigrid method for finite elements on octree meshes. SIAM J. Sci. Comput. 32(3), 1361–1392 (2010). doi:10.1137/090747774

    Article  MathSciNet  MATH  Google Scholar 

  11. Haber, E., Heldmann, S.: An octree multigrid method for quasi-static Maxwell’s equations with highly discontinuous coefficients. J. Comput. Phys. 223(2), 783–796 (2007). doi:10.1016/j.jcp.2006.10.012

    Article  MathSciNet  MATH  Google Scholar 

  12. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988). doi:10.1016/0021-9991(88)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    Google Scholar 

  14. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  15. Strain, J.: Fast tree-based redistancing for level set computations. J. Comput. Phys. 152, 664–686 (1999). doi:10.1006/jcph.1999.6259

    Article  MathSciNet  MATH  Google Scholar 

  16. Min, C.: Local level set method in high dimension and codimension. J. Comput. Phys. 200, 368–382 (2004). doi:10.1016/j.jcp.2004.04.019

    Article  MathSciNet  MATH  Google Scholar 

  17. Samet, H.: Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS. Addison-Wesley, New York (1990)

    Google Scholar 

  18. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  19. Yserentant, H.: Old and new convergence proofs for multigrid methods. Acta Numer. 2, 285–326 (1993). doi:10.1017/S0962492900002385

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

M. Theillard and F. Gibou were supported by the Department of Energy under contract number DE-FG02-08ER15991; by the Office of Naval Research through contract N00014-11-1-0027; the National Science Foundation through contract CHE-1027817; the W.M. Keck Foundation; and by the Institute for Collaborative Biotechnologies through contract W911NF-09-D-0001 from the U.S. Army Research Office. C.H. Rycroft was supported by the Director, Office of Science, Computational and Technology Research, U.S. Department of Energy under contract number DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Theillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theillard, M., Rycroft, C.H. & Gibou, F. A Multigrid Method on Non-Graded Adaptive Octree and Quadtree Cartesian Grids. J Sci Comput 55, 1–15 (2013). https://doi.org/10.1007/s10915-012-9619-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9619-2

Keywords

Navigation