Skip to main content
Log in

A Bootstrap Method for Sum-of-Poles Approximations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A bootstrap method is presented for finding efficient sum-of-poles approximations of causal functions. The method is based on a recursive application of the nonlinear least squares optimization scheme developed in (Alpert et al. in SIAM J. Numer. Anal. 37:1138–1164, 2000), followed by the balanced truncation method for model reduction in computational control theory as a final optimization step. The method is expected to be useful for a fairly large class of causal functions encountered in engineering and applied physics. The performance of the method and its application to computational physics are illustrated via several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Fig. 1
Algorithm 4
Algorithm 5
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  2. Adamyan, V.M., Arov, D.Z., Krein, M.G.: Infinite Hankel matrices and generalized Carathéodory-Fejér and I. Schur problems. Funct. Anal. Appl. 2, 269–281 (1968)

    Article  MATH  Google Scholar 

  3. Adamyan, V.M., Arov, D.Z., Krein, M.G.: Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and Riesz problems. Funct. Anal. Appl. 2(1), 1–18 (1968)

    Article  MATH  Google Scholar 

  4. Adamyan, V.M., Arov, D.Z., Krein, M.G.: Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem. Mat. Sb. 86, 34–75 (1971)

    MathSciNet  Google Scholar 

  5. Alpert, B., Greengard, L., Hagstrom, T.: Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal. 37, 1138–1164 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alpert, B., Greengard, L., Hagstrom, T.: Nonreflecting boundary conditions for the time-dependent wave equation. J. Comput. Phys. 180, 270–296 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4, 729–796 (2008)

    MathSciNet  Google Scholar 

  8. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 17–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beylkin, G., Monzón, L.: On generalized Gaussian quadratures for exponentials and their applications. Appl. Comput. Harmon. Anal. 12, 332–373 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bremer, J., Gimbutas, Z., Rokhlin, V.: A nonlinear optimization procedure for generalized Gaussian quadratures. SIAM J. Sci. Comput. 32, 1761–1788 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Causley, M., Petropolous, P., Jiang, S.: Incorporating the Havriliak-Negami dielectric model in numerical solutions of the time-domain Maxwell equations. J. Comput. Phys. 230, 3884–3899 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dym, H., McKean, H.P.: Fourier Series and Integrals. Academic Press, San Diego (1972)

    MATH  Google Scholar 

  13. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L -error bounds. Int. J. Control 39, 1115–1193 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gutknecht, M.H., Trefethen, L.N.: Real and complex Chebyshev approximation on the unit disk and interval. Bull., New Ser., Am. Math. Soc. 8, 455–458 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gutknecht, M.H., Smith, J.O., Trefethen, L.N.: The Carathéodory-Fejér (CF) method for recursive digital filter design. IEEE Trans. Acoust. Speech Signal Process. 31, 1417–1426 (1983)

    Article  Google Scholar 

  16. Gutknecht, M.H.: Rational Carathéodory-Fejér approximation on a disk, a circle, and an interval. J. Approx. Theory 41, 257–278 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8, 47–106 (1999)

    Article  MathSciNet  Google Scholar 

  18. Hammarling, S.: Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J. Numer. Anal. 2, 303–323 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hardy, G.H.: On the mean value of the modulus of an analytic function. Proc. Lond. Math. Soc. s2_14, 269–277 (1915)

    Article  Google Scholar 

  20. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1998)

    Google Scholar 

  21. Jiang, S.: Fast evaluation of the nonreflecting boundary conditions for the Schrödinger equation. Ph.D. thesis, Courant Institute of Mathematical Sciences, New York University, New York (2001)

  22. Jiang, S., Greengard, L.: Efficient representation of nonreflecting boundary conditions for the time-dependent Schrödinger equation in two dimensions. Commun. Pure Appl. Math. 61, 261–288 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Laub, A., Heath, M., Paige, C., Ward, R.: Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans. Autom. Control 32, 115–122 (1987)

    Article  MATH  Google Scholar 

  24. Lee, J., Greengard, L.: A fast adaptive numerical method for stiff two-point boundary value problems. SIAM J. Sci. Comput. 18, 403–429 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J.R.: Low order approximation of the spherical nonreflecting boundary kernel for the wave equation. Linear Algebra Appl. 415, 455–468 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, J.R.: A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 31, 4696–4714 (2010)

    Article  MATH  Google Scholar 

  27. Lin, L., Lu, J., Ying, L., E, W.: Pole-based approximation of the Fermi-Dirac function. Chin. Ann. Math., Ser. B 30, 729–742 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. López-Fernández, M., Palencia, C.: On the numerical inversion of the Laplace transform of certain holomorphic mappings. Appl. Numer. Math. 51, 289–303 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. López-Fernández, M., Palencia, C., Schädle, A.: A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44, 1332–1350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. López-Fernández, M., Lubich, C., Schädle, A.: Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30, 1015–1037 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lubich, C.: Convolution quadrature revisited. BIT Numer. Math. 44, 503–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24, 161–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ma, J., Rokhlin, V., Wandzura, S.: Generalized Gaussian quadrature rules for systems of arbitrary functions. SIAM J. Numer. Anal. 33, 971–996 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26, 17–32 (1981)

    Article  MATH  Google Scholar 

  35. Muller, D.: A method for solving algebraic equations using an automatic computer. Math. Tables Other Aids Comput. 10, 208–215 (1956)

    Article  MATH  Google Scholar 

  36. Peller, V.V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics. Springer, New York (2003)

    Book  MATH  Google Scholar 

  37. Penzl, T.: Algorithms for model reduction of large dynamical systems. Linear Algebra Appl. 415, 322–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Penzl, T.: Numerical solution of generalized Lyapunov equations. Adv. Comput. Math. 8, 33–48 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  40. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  41. Safonov, M.G., Chiang, R.Y.: A Schur method for balanced-truncation model reduction. IEEE Trans. Autom. Control 34, 729–733 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schädle, A., López-Fernández, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28, 421–438 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, New York (1998)

    MATH  Google Scholar 

  44. Trefethen, L.N.: Rational Chebyshev approximation on the unit disk. Numer. Math. 37, 297–320 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  45. Trefethen, L.N.: Chebyshev approximation on the unit disk. In: Werner, K.E., Wuytack, L., Ng, E. (eds.) Computational Aspects of Complex Analysis, pp. 309–323. D. Reidel Publishing, Dordrecht (1983)

    Chapter  Google Scholar 

  46. Trefethen, L.N., Gutknecht, M.H.: The Carathéodory-Fejér method for real rational approximation. SIAM J. Numer. Anal. 20, 420–436 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  47. Trefethen, L.N., Weideman, J., Schmelzer, T.: Talbot quadratures and rational approximations. BIT Numer. Math. 46, 653–670 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yarvin, N., Rokhlin, V.: Generalized Gaussian quadratures and singular value decompositions of integral operators. SIAM J. Sci. Comput. 20, 699–718 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

S. Jiang was supported in part by National Science Foundation under grant CCF-0905395 and would like to thank Dr. Bradley Alpert at National Institute of Standards and Technology for many useful discussions on this project. Both authors would like to thank the anonymous referees for their careful reading and very useful suggestions which have greatly enhanced the presentation of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, K., Jiang, S. A Bootstrap Method for Sum-of-Poles Approximations. J Sci Comput 55, 16–39 (2013). https://doi.org/10.1007/s10915-012-9620-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9620-9

Keywords

Navigation