Skip to main content
Log in

Stability and Convergence Analysis of Fully Discrete Fourier Collocation Spectral Method for 3-D Viscous Burgers’ Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper analyzes the stability and convergence of the Fourier pseudospectral method coupled with a variety of specially designed time-stepping methods of up to fourth order, for the numerical solution of a three dimensional viscous Burgers’ equation. There are three main features to this work. The first is a lemma which provides for an L 2 and H 1 bound on a nonlinear term of polynomial type, despite the presence of aliasing error. The second feature of this work is the development of stable time-stepping methods of up to fourth order for use with pseudospectral approximations of the three dimensional viscous Burgers’ equation. Finally, the main result in this work is that the pseudospectral method coupled with the carefully designed time-discretizations is stable provided only that the time-step and spatial grid-size are bounded by two constants over a finite time. It is notable that this stability condition does not impose a restriction on the time-step that is dependent on the spatial grid size, a fact that is especially useful for three dimensional simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abia, L., Sanz-Serna, J.M.: The spectral accuracy of a fully-discrete scheme for a nonlinear third order equation. Computing 44, 187–196 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Botella, O.: On the solution of the Navier-Stokes equations using projection schemes with third-order accuracy in time. Comput. Fluids 26, 107–116 (1997)

    Article  MATH  Google Scholar 

  3. Botella, O., Peyret, R.: Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method. Int. J. Numer. Methods Fluids 36, 125–163 (2001)

    Article  MATH  Google Scholar 

  4. Boyd, J.: Chebyshev and Fourier Spectrum Methods, 2nd edn. Dover, New York (2001)

    Google Scholar 

  5. Bressan, A., Quarteroni, A.: An implicit/explicit spectral method for Burgers’ equation. Calcolo 23(3), 265–284 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Canuto, C., Hussani, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Canuto, C., Hussani, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)

    MATH  Google Scholar 

  9. Chen, G.Q., Du, Q., Tadmor, E.: Super viscosity approximations to multi-dimensional scalar conservation laws. Math. Comput. 61(204), 629–643 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crouzeix, M.: Une methode multipas implicite-explicite pour l’approximation des’equations d’evolution paraboliques. Numer. Math. 35, 257–276 (1982)

    Article  MathSciNet  Google Scholar 

  11. De Frutos, J., Ortega, T., Sanz-Serna, J.M.: Pseudo-spectral method for the “Good” Boussinesq equation. Math. Comput. 57(195), 109–122 (1991)

    MATH  Google Scholar 

  12. Du, Q., Guo, B., Shen, J.: Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals. SIAM J. Numer. Anal. 39(3), 735–762 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Faure, S., Laminie, J., Temam, R.: Finite volume discretization and multilevel methods in flow problems. J. Sci. Comput. 25(112), 231–261 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods, Theory and Applications. SIAM, Philadelphia (1977)

    Book  MATH  Google Scholar 

  15. Gottlieb, D., Temam, R.: Implementation of the nonlinear Galerkin method with pseudospectral (collocation) discretizations. Appl. Numer. Math. 12, 119–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, B.Y.: A spectral method for the vorticity equation on the surface. Math. Comput. 64(211), 1067–1069 (1995)

    MATH  Google Scholar 

  17. Guo, B.Y., Huang, W.: Mixed Jacobi-spherical harmonic spectral method for Navier–Stokes equations. Appl. Numer. Math. 57(8), 939–961 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, B.Y., Shen, J.: On spectral approximations using modified Legendre rational functions: application to the Korteweg-de Vries equation on the half line. Indiana Univ. Math. J. 50, 181–204 (2001). Special issue: Dedicated to Professors Ciprian Foias and Roger Temam

    MathSciNet  MATH  Google Scholar 

  19. Guo, B.Y., Zou, J.: Fourier spectral projection method and nonlinear convergence analysis for Navier-Stokes equations. J. Math. Anal. Appl. 282(2), 766–791 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, B.Y., Li, J., Ma, H.P.: Fourier-Chebyshev spectral method for solving three-dimensional vorticity equation. Acta Math. Appl. Sin. 11(1), 94–109 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, B.Y., Ma, H.P., Tadmor, E.: Spectral vanishing viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 39, 1254–1268 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  23. Karniadakis, G., Israeli, M., Orszag, S.: High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97, 414–443 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kreiss, H.O., Oliger, J.: Methods for Approximate Solution of Time-Dependent Problems. GARP Publications, vol. 10. World Meteorological Organization, Geneva (1973)

    Google Scholar 

  25. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. AMS, Providence (1967)

    Google Scholar 

  26. Le Quere, P.: Transition to unsteady natural convection in a tall water-filled cavity. Phys. Fluids A 2, 503–515 (1990)

    Article  MATH  Google Scholar 

  27. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179, 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, H.P.: Chebyshev-Legendre super spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 35, 893–908 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Maday, Y., Quarteroni, A.: Legendre and Chebyshev spectral approximations of Burgers’ equation. Numer. Math. 37, 321–332 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Maday, Y., Quarteroni, A.: Approximation of Burgers’ equation by pseudospectral methods. RAIRO. Anal. Numér. 16, 375–404 (1982)

    MathSciNet  MATH  Google Scholar 

  31. Maday, Y., Quarteroni, A.: Spectral and pseudospectral approximation to Navier-Stokes equations. SIAM J. Numer. Anal. 19(4), 761–780 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Maday, Y., Ould Kaber, S.M., Tadmor, E.: Legendre pseudospectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30(2), 321–342 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Majda, A., McDonough, J., Osher, S.: The Fourier method for non-smooth initial data. Math. Comput. 32, 1041–1081 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marion, M., Temam, R.: Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26, 1139–1157 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Marion, M., Temam, R.: Nonlinear Galerkin methods: the finite element case. Numer. Math. 57, 205–226 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Peyret, R.: Spectral Methods for Incompressible Viscous Flow. Springer, New York (2001)

    Google Scholar 

  37. Shen, J., Temam, R.: Nonlinear Galerkin method using Chebyshev and Legendre polynomials I. The one-dimensional case. SIAM J. Numer. Anal. 32, 215–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tadmor, E.: The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23, 1–10 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tadmor, E.: Convergence of spectral methods to nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30–44 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tadmor, E.: Shock capturing by the spectral viscosity method. Comput. Methods Appl. Mech. Eng. 80, 197–208 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tadmor, E.: Total variation and error estimates for spectral viscosity approximations. Math. Comput. 60(201), 245–256 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tadmor, E.: Burgers’ equation with vanishing hyper-viscosity. Commun. Math. Sci. 2(2), 317–324 (2004)

    MathSciNet  MATH  Google Scholar 

  43. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. AMS, Providence (2001)

    MATH  Google Scholar 

  44. Weinan, E.: Convergence of spectral methods for the Burgers’ equation. SIAM J. Numer. Anal. 29(6), 1520–1541 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Weinan, E.: Convergence of Fourier methods for Navier-Stokes equations. SIAM J. Numer. Anal. 30(3), 650–674 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wu, S., Liu, X.: Convergence of spectral method in time for the Burgers’ equation. Acta Math. Appl. Sin. 13(3), 314–320 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigal Gottlieb.

Additional information

S. Gottlieb. This work was supported by grant number FA-9550-09-0208 from the Air Force Office of Scientific Research.

C. Wang. This work was supported by NSF with grant number DMS-1115420.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottlieb, S., Wang, C. Stability and Convergence Analysis of Fully Discrete Fourier Collocation Spectral Method for 3-D Viscous Burgers’ Equation. J Sci Comput 53, 102–128 (2012). https://doi.org/10.1007/s10915-012-9621-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9621-8

Keywords

Navigation