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Abstract

In this paper we extend the Summation—by—parts—simultaneous
approximation term (SBP—SAT) technique to the Schrodinger equa-
tion. Stability estimates are derived and the accuracy of numerical
approximations of interior order 2m, m = 1,2, 3, are analyzed in the
case of Dirichlet boundary conditions. We show that a boundary
closure of the numerical approximations of order m lead to global
accuracy of order m + 2. The results are supported by numerical
simulations.

1 Introduction

Fundamental processes at the atomic level can be described by the time-
dependent Schrodinger equation (TDSE), which in one dimension takes the
form



where 7 is Planck’s reduced constant, m is the mass of the system, and
i = v/—1. Equation (1.1) can be derived from the full Schrédinger equation
for nuclei and electrons through a series of approximations [1], relying on
the fact that electrons are light and fast compared to the nuclei. Only
the movement of the nuclei is considered in (1.1), where the influence from
the electrons has been modeled into the potential V. In equation (1.1),
x can denote the position of a particle (or the internuclear distance in a
two-particle system), in which case |u(x,t)|? corresponds to the probability
of the particle position x at time t. We consider the Dirichlet boundary
conditions

u(—L,t) =u(L,t) =0, (1.2)

corresponding to infinite potential barriers which the particle cannot over-
come. Figure 1 displays a time series of the probability distribution of the
solution to (1.1) with V' = 0, obtained from a high-resolution numerical
simulation. The initial state, a Gaussian, is propagating to the left where
it hits the boundary and is reflected due to the imposed boundary con-
ditions (1.2). The reflected pulse exhibits the dispersive character of the
solution to the Schrodinger equation, as seen in the bottom right figure.
The pattern that arises close to the boundary is a result of constructive
and destructive interference of the superimposed plane waves constituting
the Gaussian.
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Figure 1: Time series of a Gaussian pulse traveling to the left, hitting
the boundary, and being reflected back into the domain. Note that the

incoming pulse in the upper left figure is more localized than the dispersed
pulse in the lower right figure.

The two-dimensional TDSE
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with Dirichlet boundary conditions

u(_Llayvt) = u(Llayvt) = ’LL(.’E, _L27t) = U(.’E,LQ,t) = 07 (14)

can be interpreted as describing the internal motion of a molecule with two
internal degrees of freedom, describing e.g. bond lengths of the molecule.
The masses m, and m, are reduced masses of the nuclei. In a stable
molecule configuration the distances between nuclei have lower and upper



limits, and the probability distribution is in this case confined to a bounded
domain §2 by the potential V', which can be both spatially and temporally
dependent. The Dirichlet boundary conditions (1.4) can be imposed at
numerical boundaries, located outside the compact support of the proba-
bility distribution. Figure 2 depicts how the probability distribution of a
two-dimensional model of a Phenol molecule is located in the valley of the
potential surface, which corresponds to one electronic configuration. The
peaks correspond to areas with high probability. Here, the boundaries cor-
responding to the lower and upper limits of the internuclear distance are
closed with homogeneous Dirichlet boundary conditions, whereas periodic
boundary conditions is the natural choice for the rotation angle boundaries.
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Figure 2: Probability distribution plotted together with a potential, which
models one electronic configuration of a Phenol molecule.

The Schrédinger equation is commonly discretized using spectral meth-
ods that accurately capture the dispersion relation using relatively few grid
points [2]. Alternatively, local approximations, such as finite difference
methods can be used, but high order schemes are favored since approxima-
tions of low order typically lead to large dispersion errors.

In order to efficiently make use of computational resources, it is desir-
able to be able to refine the grid locally in regions where higher resolution
is needed. Refinement is especially important in higher dimensions, since
the total number of grid points in a static grid increases as N¢, where d
is the dimensionality and N the number of grid points in each direction.
A major drawback of spectral methods is that the global approximation



prevents such local refinement. An additional drawback is that in a paral-
lel framework global communication is needed in each time step, whereas
in the finite difference setting only the nearest neighbor processors need
to communicate. Moreover, the amount of data that needs to be commu-
nicated is O(N?) for spectral methods and O(N9~1) for finite difference
methods.

We seek to design a high order method, with flexibility to allow lo-
cal grid-refinement, that leads to an accurate and stable numerical ap-
proximation. One framework that could perhaps fulfil our requirements
and be extended to the Schrédinger equation is the summation-by-parts-
simultaneous approximation term (SBP—SAT) method [3], which has been
successfully used for many PDE’s, such as the heat equation, the Euler
equations and Burgers’ equation. The summation-by-parts property of
SBP operators leads to estimates that mimic the continuous energy esti-
mate. In combination with weakly implemented SAT boundary treatment,
stable approximations can be obtained. For a selection of the literature on
the subject, we refer to [4, 5, 6]. In this paper, sections 2 and 3 contain a
more detailed description of the method.

Instead of using spectral methods with exponential convergence rate,
the SBP-SAT method is based on finite difference schemes, so although we
may loose some accuracy, we gain flexibility and robustness.

In this paper we propose the particular form of the SAT penalty terms
so that stability estimates can be derived for the Schrodinger equation.
We also consider the accuracy of these approximations. The lower order
schemes of the SBP operators near the boundaries lead to a lower over-
all convergence rate with respect to the interior stencil. However, there
are results showing that the reduction of global accuracy is not as severe
as the boundary approximations may suggest, see, for example, [7, 8, 9].
The approach we take on here is to explicitly investigate the determinant
condition for each case, see [10], p. 514.

The main goal of this paper is to show that the SBP-SAT framework is
applicable to the Schrédinger equation, and to derive the correct form of the
boundary terms in this formulation. We restrict ourselves to one and two
dimensions, where boundaries are closed with the Dirichlet boundary con-
ditions described above. Extension to higher dimensions is straightforward
and is together with extension to adaptive grids the topic of a forthcoming
paper. A second goal is to analyze the accuracy of the approximation. We
present a framework for analyzing accuracy of stable boundary closures,
and apply it to our approximation. Our analysis is restricted to problems
with constant coefficients and only leading order derivatives, as variable
coefficients and lower order terms lead to a technically more involved anal-
ysis. In many cases, the restrictions can be removed. The premisses of the
removal will be discussed to some extent.



The structure of the paper is as follows. We start with an illustration
of the second order accurate SBP—SAT method applied to the well-known
usteady diffusion equation with Dirichlet boundary conditions. We derive
the desirable error estimates using a new generic approach, which clearly
illustrates all the steps in this process and introduces important terms and
parameters. The same methodology is then applied to the Schrédinger
equation, where we derive stability estimates in one and two dimensions
in section 3. In section 4 we consider accuracy of the second, fourth and
sixth order methods in the case of Dirichlet boundary conditions. Section
5 gives numerical evidence supporting the analysis and extending results
to higher orders of accuracy. Conclusions are drawn in section 6.

2 Accuracy of a stable discretization of an
IBVP

Consider the linear initial boundary value problem (IBVP)

U, = DU + F(z,t), x > 0,t >0,
U(z,0) = f(z),

BU|$:0 =0,

UGB < oo
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Here B, D are spatial differential operators, and F, f are smooth functions.
We assume the problem is well posed, that it has a unique smooth solution
bounded by data. See for example [10] for a precise definition. Consider a
semi-discrete approximation

ut:QquF,xZO,tZO,u(O):f,Hu(t)Hh < 00. (2.5)

In (2.5) u, f, F denote grid functions on the grid z; = jh, j = 0,1,2,...,
and Q is a difference operator into which the boundary condition (2.3) is
incorporated. We assume the data is sufficiently smooth for all relevant
derivatives to be bounded and continuous. Furthermore, ||ul|;, denotes a
discrete norm of the grid function wu.

We say that the semi-discretization (2.5) is stable if the solution satisfies
the energy estimate

hu(t) < K (||f|h [ |F<T>||hdr) , (2.6)

where K (to) is independent of f and F for t € [0, to].



We define an inner product and norm for discrete complex valued grid
functions u,v € CV,

(u,v)p = u* P, |ul|% = u* Pu,

where * denotes the Hermitian transpose and P is assumed to be a positive
definite diagonal matrix. Note that with P = hI we get the standard
discrete norm.

2.1 Accuracy by the energy estimate

To analyze the accuracy we consider the pointwise error, defined by
&j(t) = u;(t) = Uz, 1),
where U satisfies (2.1) and u satisfies (2.5). Then
& =Q+ T, 2>0,t>0,80)=0,|&|n < co. (2.7)

where T is the truncation error, which typically depends on derivatives
of the continous solution and on h. We say that the approximation is
consistent if | T||, — 0 as h — 0. In a bounded time interval consistency
and stability can be combined to yield convergence. In particular, if || T Il <
Kh9, then the convergence rate will be at least q.

If the truncation error ~ h9 everywhere we cannot expect better overall
convergence rate than q. However, in many cases the convergence rate of
the truncation error is significantly lower near the boundary than in the in-
terior. By straightforwardly applying the energy estimate the convergence
rate will be governed by the lower rate at the boundary. Often numerical
computations show that this convergence rate is pessimistic. We shall in
the next subsections demonstrate how a more detailed analysis of (2.7) can
be used to prove a sharper convergence rate result.

2.2 Parabolic example

To illustrate our approach we apply it to the well-known unsteady diffusion
equation,
Uy =Up+F,2>0,t >0 (2.8)

with initial condition (2.2), boundary condition at z =0
U(0,t) =0, (2.9)

and the requirement of a bounded I3 norm (2.4). For this problem we
assume real valued quantities.



Consider the semi-discrete SBP-SAT approximation of (2.8), (2.9),
(22), (2.4),

uy = Qu — TP Equ+ F, t > 0,u(0) = f, ||lu(t)||n < co. (2.10)

Here
Q=P Y(—A—-E)S), AT=A4>0,

is an SBP operator of the second derivative, with interior order 2m and
interior width 2m 4+ 1, with P = PT > 0 defining the corresponding norm,
see [11]. 7 is here a real-valued parameter to be determined. Furthermore,

1
S=7 ) ,

where the first row of S approximates the first derivative. The penalty term
and @ also contain Ey = diag(1,0,0,...). We shall use standard SBP op-
erators for second order derivatives, given in for example [6], or [11], and
for simplicity in appendix C. At p points near the boundary the order of
the second derivative approximation is of order m. The standard opera-
tors have m = 1,2,3,4, and p = 1,4, 6, 8, respectively, and correspond to
diagonal norms.

The discretization (2.10) satisfies an energy estimate, i.e. is stable, if
7 is chosen appropriately. To see this, introduce R = ST AS~!, where R
is symmetric and positive semi-definite. Multiplying (2.10) with u” P and
adding the transpose yields

1 -
fiHu(t)H?; = —(Su)"RSu — u" EySu — 7u” Equ + (u”, F)p.  (2.11)

In [6] it was shown that an estimate results due to the following lemma.

Lemma 2.1. In the second order case R — ahEy > 0 for any o < 0.4.
Note that the result is independent of h.

A proof of lemma 2.1 is given in appendix A. Equation (2.11) leads to

L ) + (Su)" (R — abEy)Su =
Lo T o 221 o, ] e

r



If we choose 7 > ﬁ then I' will be negative semi-definite and an estimate
on the form (2.6) can be obtained. With 7 > 11 we get by lemma 2.1

lu@)lp < K (Ilfllp + / ° ||F<r>||pd7) , (2.12)

for t € [0,tp], with K = 1. Alternatively, stability can be shown with
the penalty term 7P~1ST Equ, using the methodology in [12], based on a
discontinuous Galerkin formulation. In that case we do not rely on lemma
2.1. We will use this approach in section 3, where we derive stability
conditions for the Schrédinger eqution. Due to the non-diffusive character
of the Schrodinger equation, we cannot derive estimates using lemma 2.1.

In the m = 1 case numerical computations show that the overall order of
accuracy is 2, but a straight-forward application of the energy estimate to
the error equation (2.7) yields the order 1.5. To derive a sharp estimate we
shall partition the truncation error into an interior part with support away
from the boundary, and a boundary part with support near the boundary.
We introduce

T=h"T+hr"T, T,=0,i>p, TI=0,i<p.

We call T the boundary truncation error and 77 the interior truncation
error. They are both grid functions, and can be bounded in terms of
derivatives of U. The error is partitioned correspondingly, & = € +¢!. The
error due to the interior truncation error, ¢/, can be estimated through
the energy estimate, yielding ||e!||;, < Kh?™. For ¢, the error due to the
boundary truncation error, we will use another technique.

2.2.1 Accuracy by Laplace transform

In this part of the paper we will estimate the error due to the boundary
truncation error, ¢, in (2.7). In the case m = 1 there is an O(h) error in
only one point. We have,

860 T
E = D+D_€1 — ﬁfo + hj"()7
0z;

5 =DsD-gji=12...,

lle(@®)ln < oo,
where 7 = 2h7 is independent of h. The operators D, D_ are defined as

Uir] — Usj Ui — Uj_
_ %41 J _ Y j—1



so that D, D_ is the standard central second order stencil approximating
the second derivative. Here T is bounded in terms of spatial derivatives
of the solution U. The precise estimate is of the form

1
< — .
To(0) < 15 o |Usas . )

After Laplace transformation, where we introduce s as dual variable, and
multiplication by A% we have

Sh2éo =£€9g— 281 +é9—Tég+ hsj_b, (213)
Sh2éj:éj_l—Qéj+fj+1,j:1,2,..., (2.14)
1]l < o. (2.15)

This is a difference equation which we can solve. The general solution is
on the form x7, where x satisfies the characteristic equation arising from
(2.14),

k2= (8+2Kk+1=0. (2.16)

We say that a root x is admissible if it satisfies (2.15), i.e. |x| < 1. The
roots of (2.16) will be continuous functions of § = sh? and have properties
given by lemma 2.2.

Lemma 2.2. Consider the characteristic equation (2.16) for Re(§) > 0.
The roots are

~ ~\ 2
k1(5) = 1+§+ <;) 5 |kl > 1, (2.17)
~ ~\ 2
- S S -
ko(8) =1+ 5 <2) +3, |kl <1, (2.18)

i.e. Ko 15 the only admissible root. In the vicinity of § = 0 the admissible
root satisfies

ro(3) =1 — V354 0(]3)), (2.19)
1 _ 1+ O/

L—|r(3)> = /203

(2.20)

Proof: Equations (2.17) and (2.18) are standard formulas, where the
branch cut for the square root is along the negative axis. Equation (2.19)
follows by Taylor expansion. Equation (2.20) can be derived by expressing

10



§=13le?, 6] < Z. We get from (2.19) that ro(5) = 1 — \/]5[e?/2 + O(|3]).
This ylelds

@ = (1 f> (fsm ) +0(3)
—1—2/[flcos & + (),

. 0 1

and since cos 5> 7
(I 1 < 1O
L—|r2(3)]2  2y/[5]cos & + O(J3]) ~ E

The general solution of (2.13)—(2.15) is
g =o0r} j=0,1,2,.... (2.21)

The coefficient o is determined from (2.13). By using (2.21) and the fact
that ko satisfies the characteristic equation (2.16) we can rewrite (2.13) as

(547 — 3ka) 0 = BTy, (2.22)
~—_———
C(3)

where 7 > = P is independent of h.

Note that it is straight-forward to extend the definition of C'(5) from
Re(5) > 0 to Re(8) > 0, yielding a continuous function. We remark that
if C'(5) # 0 for all Re(3) > 0 the approximation is said to be boundary
stable, or to satisfy the Kreiss condition [10]. Further, by stability (2.12)
we can be sure C(§) # 0 for all Re(5) > 0. In particular we note that in
the vicinity of § = 0 we have by (2.19) that

C(3) =7+ 0(|5"), (2.23)

which is uniformly bounded away from zero in a neighborhood of § = 0. In
this case a straight- forward calculation shows that |C'(3)|~! is uniformally
bounded for all Re(§) >

However, for the analysis of accuracy we only need to consider a neigh-
borhood of § = 0. The motivation is as follows: We are seeking an asymp-
totic accuracy result. The asymptotic behavior will only be seen when all
relevent components of the solution are well resolved. This corresponds to
the relevant part of the truncation error having bounded support in the
s-plane. We shall only consider the well-resolved part, and therefore as-
sume there is some constant K, such that T'(s) = 0 for |s| > K,. Thus

11



T(5) = 0 for |3| > 6, § = h2K, which shows that we only need to consider
a small neighborhood of § = 0 when estimating the asymptotic effect of
the boundary truncation error.

By (2.23), |C(0)|7}| < 1/7, and by continuity there exists a § > 0
such that |3] < ¢ implies |C(3)|7!] < 2/7. By (2.22) we have a good 3-
independent bound for o when |3| < §. For h sufficiently small, h?K, < 6,
and o = 0 when |5| > §. Since |ra| < 1, |€;| < |o| at all grid points. Thus
an estimate in physical space follows by Parseval’s relation:

oo 1 oo ~ )
|tk g [t ioka
2 o 4 [
gﬁq—/ mﬂmzm;/|nwt (2.24)
T J _ T 0

By arguing that the future cannot affect the past the upper limit of both
time integrals can be replaced by any to > 0. A bound on |||, follows
from (2.20) since

o2h o2h

€17 =D I&1Ph =0 [ra(3))? = +—— = < C—=.
" Z: Z: 1= |r(3)? = V3

By Parseval’s relation we have

i 1 [ , C [ W|Ty|?
5%:7/ 2+ M<f/ d
J) Neliar=gn [ R vionaes o [ 5

K (o) . (o)
<hS— max |U,(z,n + i€)|?d¢ = h6K/ max |U,(z,t)|dt.
o 0<z<h

21 J_ oo 0<z<h

In the second inequality we have used that |Uu..| = |s||U,| and that
h|s|?/+/|3] = |s|'*® is bounded. This proves that for this case, asymp-
totically the boundary error converges to zero with order 3.

2.3 Accuracy in general

In a more general case there will be a quadratic matrix C(§) whose inverse
needs to be bounded. This is the same matrix as appears in the determinant
condition (see [10], chapter 12). In this section we present the steps of the
accuracy analysis in the general case.

Consider a general IBVP (2.1) discretized by (2.5). We make the fol-
lowing assumptions.

Assumption

1. At the p < oo points closest to the boundary the truncation error is
KTy, 5=0,1,...,p—1.

12



2. Sufficiently far away from the boundary the difference operator has
constant coefficients and is stable when applied to a periodic problem.

3. There is an integer £ > 0 such that Q = htQ is independent of h.

The second assumption requires that the coefficients of the problem are
constant, while the last assumption corresponds to Q approximating ¢t"
order derivatives, and that there are no lower order terms.

Equation (2.7) is divided into two parts considered separately, one equa-
tion for the error due to interior truncation error T7, e, and one equation
for the error due to the boundary truncation error, . &’ is estimated
through the stability estimate, straight-forwardly yielding convergence rate
2m. The effect of the boundary truncation error A7} is analyzed by con-
sidering (2.7) with T replaced by T and ¢ replaced by e. After Laplace
transformation and multiplication with A¢ we have

56, = Qe+ W™, 5 = sht. (2.25)

Consider this difference equation in the right half plane Re(5) > 0. There
are solutions of the form x7 where |x| are the admissible roots of a char-
acteristic equation, i.e. the roots for which |x| < 1. The assumption of
stability of the interior difference operator ensures that the number of ad-
missible roots is constant in the right half plane Re(3) > 0. The general
solution will be

g = Y on(kn) ™, j=NN+LN+2,... (2.26)
n=1
Here (k1,...,k,) are the admissible roots of the characteristic equation,

and N depends on how many points b are affected by the boundary error or
the penalty terms, and on how many admissible roots there are. There will
also be N free parameters €g, ..., éx_1 in the solution, where N = b —m.
Inserting (2.26) and the free parameters into (2.25) yields a linear system

C(3)% = K™+ Tg.

Here ¥ = (04,...,00,80,...,én_1)7 and T contains the b first compo-
nents of T'. We are now ready to formulate and prove the following theorem.

Theorem 2.3. Consider a discretization (2.5) of (2.1) satisfying an energy
estimate (2.6), and the assumptions 1-3 stated above. We also assume
that the Laplace transform of the boundary truncation error has bounded
support, that is for some K \Tj(s)\ =0,j=0,1,...p—1 for |s| > K;. If
C(5) is uniformly invertible near the origin then the effect of the boundary

13



error will decay as h™*. More specifically, if there exists K, < 0o, § > 0
such that |C(3)7Y < K. for all Re(3) > 0, |3| < , then the solution of
(2.25) satisfies

to to
/ lej)2dt < hz(m“)Kf/ |T)?dt, j=0,1,2,....
0 0

The proof follows exactly as in the parabolic case. We remark that
usually it is sufficient to require C'(0) to be invertible. By continuity the
invertibility is valid in a neighborhood of § = 0. As |k,| < 1 a pointwise
bound of the Laplace transformed error follows. Using a Parseval equality
as in (2.24) this bound leads to a time-integral estimate in physical space,
which concludes the proof.

To ensure that we only consider well resolved solutions we have assumed
bounded support of the solution (and of T) in Laplace space. In practice
we need the resolution to be sufficient for asymptotic error behavior. In
many cases the result extends to variable coefficient problems by the frozen
coefficient approach, see [10]. Also lower order terms can in general be
allowed. They are expected to cause only O(h) perturbations to the matrix
C, and are therefore of no significance for the analysis.

3 Stability of the semi-discrete Schrodinger
equation

We consider the Schréodinger equation in the simplest possible setting, one
space dimension without potential,

Uy =iUp + F, x€Q,t>0,U(z,0) = f(z). (3.1)
We will consider half-plane problems with a Dirichlet boundary condition:
N=10,00),U(0,¢t) =0, | U] < 0. (3.2)
We shall also consider the two-dimensional Schrédinger equation,
Uy =iUpy + iUy + F, 2,y € Q,t > 0,U(z,y,0) = f(x,y), (3.3)
on a half-plane with Dirichlet boundary condition:

Q2 =1[0,00) x (=00,00),U(0,y,t) = 0, U] < o0. (3-4)

14



3.1 Analysis of stability for the Schrodinger equation
Consider the semi-discrete SBP-SAT problem corresponding to (3.1), (3.2):

uy = iQu — TP ST Egu+ F, t > 0,u(0) = f, [lu(t)||n < oc. (3.5)

Here u, f, F' are grid functions on the grid z; = jh, j = 0,1,2,..., and
Q@ is a ”standard” SBP operator of the second derivative, with interior
order 2m and interior width 2m + 1, with P defining the corresponding
norm [11]. As in the parabolic case we have Q = P~1(—A — EyS), with
AT = A > 0. Ey and S are defined in section 2.2. At p points near the
boundary the order of the second derivative approximation is m. We recall
that the standard SBP operators have m = 1,2,3,4, and p = 1,4,6,8,
respectively, and correspond to diagonal norms. Here, 7 is assumed to be
a complex-valued parameter to be determined.

We also consider the semi-discrete problem in two space dimensions
corresponding to (3.3), (3.4),

w, = {(iQ, — 7P, 'S Eo ) @ I, + I, ®iQ, } u + F, (3.6)
t>0,u(0) = f, [Ju(t)|[n < oo,

where the solution vector w is organized with elements initially chang-
ing along the y-direction. I, and I, are identity matrices and Eyp, =
diag(1,0,0,...). We can show that the discretizations (3.5) and (3.6) satis-
fies energy estimates with non-decaying energy if 7 is chosen appropriatly.
The energy conservation is an important property of the numerical scheme,
since the ls norm is conserved for the continuous equation.

Theorem 3.1. Consider the right half plane problems in one and two
space dimensions, (3.1) and (3.3), with homogeneous Dirichlet boundary
conditions, discretized by the SBP-SAT discretizations (3.5) and (3.6), re-
spectively. If T is chosen as T = i then (3.5) and (3.6) are stable by the
estimates

u(®)llp < II71lp + / \IE @) pdr, (3.7)

llu(@®lP <[If]lP +/0 IF) e, (3-8)

in any time interval t € [0, to).

15



Proof: Multiplying (3.5) with «*P and adding the Hermitian transpose
leads to the energy estimate

d 2 Ug - 0 —i—T7" Ug x *
dt|u||P_[(Su)o] [i—T 0 ][(Su)o}—’_u PF + F*Pu.

By choosing 7 = i, equation (3.5) satisfies the estimate

L hullp = 2llullp -l = ' PF + F*Pu < 2ljull ol Fll
t dt

Dividing by 2||u||p and integrating in time leads to (3.7). The energy
estimate of the two-dimensional problem is completely analogous to the
one-dimensional energy estimate, and thus leads to the same penalty pa-
rameter for the right half-plane problem. Multiplying (3.6) with u*P,
where P = P, ® P, and adding the transpose leads to

d
Sl = w*Pu+ uiPu

=u ({(-7+0)ST By + (—7" —i)Eo4S: } ® P,) u+u*PF + F*Pu.

The estimate (3.8) is obtained by choosing the penalty 7 = 4, and integrat-
ing in time.

If we instead consider the left half-plane problems, stability for the
one- and two-dimensional problems are obtained by (3.7) and (3.8) for the
corresponding penalty 7 = —i.

Remark: The stability estimates (3.7) and (3.8) are valid for equations
(1.1) and (1.3) also in the case of a non-zero potential V.

4 Analysis of accuracy of the SBP—SAT bound-
ary treatment

We will analyze the one dimensional problem. Assuming that the contin-
uous problem has a smooth solution U(z,t) we can derive an equation for
the pointwise error,

gj(t) = Ulx;,t) —u;(t),

where the truncation error appears as a forcing term. In the Dirichlet case
(3.5) we shall analyze the approximations with interior order 2m = 2,4, 6.
The error equation is of the form

& =iQé — TP 'STEwE + Tt >0,6(00) =0, |le(t)||n <oo.  (4.1)
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The first p components of T(™) are at worst of order O(h”) while all other
components are of order O(h*™). We introduce 7™ and 7™ such that

T(m) _ hmT(nL) + hQWT(I’"L),
"™ =0,5 > p, (4.2)
Tj(lym) =S 07] <p.

Here T(™ and TU-™ depend on derivatives of U, and p is the number of
points in the vicinity of the boundary where special stencils are used. In
the analysis of € we will consider the Laplace transform of (4.1),

sé = iQé — TP ST Egé + h™T™ |||l < oo, (4.3)

for Re(s) > 0. Sufficiently far away from the boundary (4.3) is of the form

m=1: sé& =iD D_¢éy, (4.4)
h2
m=2: sép=i <D+D_ - 12(1)+1)_)2> Er, (4.5)
~ . h2 2 h4 3 A
m=3: sé,=1i|DyD_— E(DJFD_) + %(D+D_) €. (4.6)

We will prove the following theorem.

Theorem 4.1. Consider (3.5) for m = 1,2,3 and assume the continuous
solution is smooth, with all relevant derivatives bounded in the norms || - ||n
and | |oo i all intervals 0 < t < ty. We also assume that the boundary
truncation error, defined by (4.2), has Laplace transform with bounded sup-

port, that is for some K |Tj(m)(s)| =0,7=0,1,...,p—1 for|s| > Ks. The

error, partitioned into boundary error ¢ and interior error el corresponding
to T and TU™) | satisfies

le" @)lln < K" K™ (), (A7)

to "
/ le;(1)2dt < R2FIB R (1), j=0,1,..., (4.8)

0

to

[ ez < i m ). @)
0

Here Ky, K5, K3 depend only on U and its derivatives, and on the time
interval. [%§] denotes the integer part of 3.

Proof: Consider first (4.1) with only the interior part of the truncation
error as forcing. From the smoothness assumptions || 77| is bounded,
and the estimate (4.7) follows directly by applying theorem 3.1.
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To derive (4.8) we shall use theorem 2.3, while (4.9) will follow by a
simple extension. We will derive the matrix C(5) associated with (4.3),
and show that it is invertible in a vicinity of Re(5) = 0. The estimates
are proven to hold in sections 4.1, 4.2 and 4.3 for second, fourth, and sixth
order of accuracy, respectively. We will need lemma 4.2 and corollary 4.3
for the proof of the theorem.

Lemma 4.2. Let 5 = sh? and consider the characteristic equations cor-
responding to (4.4),(4.5) and (4.6). As long as Re(3) > 0 there are no
characteristic roots with |k| = 1. For m = 1,2,3 the number of admissible
roots, satisfying |k| < 1 for Re(8) > 0, is 1,2,3, respectively. In the vicinity
of § =0 they are given by

—1+

m=1: n1:1+7\/§+(9(§), (4.10)

: - G 06), k=T 5
m=2: k=1 \/ﬁfﬂ?(), o =T-4V3+0(3), (4.11)

-
m=3: o :1_%\/@ 03), ke = £ + 0(3),  (4.12)

ks = k) + O(35), kY ~0.05189 + 0.08009i, £\ ~ 0.05189 — 0.08009:.

Proof: The first claim is proven by contradiction. Similar proofs are
found in for example [10]. Consider solving a periodic Cauchy problem.
It is trivial to show that the standard central difference operator of order
2m, denoted by 627”) (given by the right hand side operators of (4.4)-
(4.6) for m = 1,2,3), yields a stable semi-discretization, with the symbol
of the spatial operator satisfying Re( A(gzm)(f)) =0 for all £&. Assume the
corresponding characteristic equation has a root || = 1 = |¢??| for some
Re(8) > 0. This implies

s = Q5™ (ho).

This is a contradiction since the left hand side has a strictly positive real
part while the right hand side is purely imaginary.
In the second order case the characteristic equation corresponding to
(4.4) is
K24+ (15— 2)k+1=0,

with roots
~ N\ 2 - -\ 2
.8 5 " .8 5 .
/11:1—254— —<2> — 18, @:1—25— —(2> —15.
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As the number of admissible roots is constant for all Re(3) > 0, they can
be determined from some extreme value. In the vicinity of § = 0 we find
by Taylor expansion that there is one admissible root, given by (4.10).

In the fourth order case the characteristic equation is

—k% 4 16K% + (1125 — 30)x* + 16K — 1 = 0. (4.13)
At § =10 (4.13) can be factorized into
(k —1)*(—k* + 14k — 1) = 0,

with a double root at kK = 1, and two single roots, one of which is ad-
missable, and given by the second expression in (4.11). By perturbation
analysis we find that away from § = 0 the double root separates into one
admissible and one inadmissible. In particular we find that the admissible
root is given by the first expression in (4.11).

In the sixth order case (we omit the details) one finds that the charac-
teristic equation at § = 0 can be factorized into

(k —1)%(2x* — 23K3 4 222k% — 23K +2) = 0,
which has three admissible roots. Near § = 0 they are given by (4.12).

Corollary 4.3. Consider |s| < K, Re(s) > n > 0. For m = 1,2,3 the
admissible roots k1 satisfies

1= [m1(3))? = LRI+ /]3]

Proof: Write § = |~|e“9 With 6] < 7r/2 - a a > 0,sin(a) > n/K. By
(4.10) we can express k1(5) = 1++/|5 e O(3) and by trigonometric
manipulations we get

1—|x(3) :—2\/>cos< 4>+O(| )
22\/3005 (5—5) +O(|3])
> /]3] sin (@) + O(|3]) > \Fl—l—(’)\ﬁ

Starting from (4 11) (4 12) in the fourth and sixth order cases we have
=1+/|5 e T 1) 4+ O(8) and similarly get

L k) __%/(m<—4)+oun

> 2./]5] cos (f—f) + O(|3))
> /]3] sin () + O(|3]) > \/>1+(9\/>
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4.1 Proof of theorem 3 for interior order 2

The first three rows of (4.3) are effected by the penalty. We have

S0 = i(Bg — 281 + &9) + 3idg — W3TLY,

5&1 = i(y — 261 + &2) — 2iéy, (4.14)

88y = i(&1 — 262 + &3) + Lé0.
For the other rows, k = 3,4,..., (4.4) is valid. The boundary truncation
error is To(l) = iUz (0, 8) + O(h) = isU, (0, s) + O(h). Note that the O(h)
part can be estimated together with the interior error, and will be omitted

below.
Away from the boundary the solution is

Ao G2 s
gj=oKky ,7=2,3...,

where k1 is given by (4.10). The coefficient ¢ and the remaining unknowns
in the solution, &y and &;, are determined from (4.14), which gives

2

—K2 —i5—4 2 o —h3isU,(0, s)
—K3 1 —i5+ 2 g | = 0
(—i5+2)k? — K3 —0.5 -1 1 0
C(3) )
We note that
-1 —4 2
coy=1|-1 1 2
1 -05 -1

is non-singular. By the continuity of C(3) it follows that there exists a
§ > 0 such that |C(8)7!] < 2|C(0)~!| = K, for all |3| < § with Re(8) >0
(This claim can be generalized to other constants). We can now apply
theorem 2.3, and (4.8) follows for m = 1.

To show (4.9) we need to consider

ho?

é|I? = o hle(8)]? = ————,
H Hh ; | )‘ 17|I€(5)‘2

for Re(8) > h%n > 0. We assume h is so small that h? K < §, which is the
case in our numerical study, and that |C(3)7!] < 2|C(0)~}] is valid for all
relevant 5. Then we can solve for ¥ and have

o] < Kch?ls| a0, 5).
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By corollary 4.3 we have

=

U (z,5)* < h°— max |Us (5[,

A2 <
IEl < ‘/ | 0<2<h AN =y 0<a<h

for any n > 0. By Parseval’s relation we have

oo B 1 oo R )
| el = [ e+ ie)lpag
0 T J—c0

max |Uz(;v, n+ i§)|2d§

< h®— K
2mn

K
=ht—= / e 2t Jmax, |U (z,t)|?dt.

Let n = 1/tg for some to > 0. By arguing that the future cannot effect the
past the upper limit of both time integrals can be replaced by t; and we

obtain (4.9), with Kél) ~ \/to fgo |U:||12dt. Thus we have shown that the

boundary error is of order 3.

4.2 Proof of theorem 3 for interior order 4

Since p = 4, the four first equations of (4.1) have truncation errors of order
m = 2. Corresponding to (4.3) we have

50 = i(280 — BE1 + 46 — &3) + B3 &, + iRV,
561 = (6o — 281 + &o) — gy 4 zh4T<2>
11062 + 4353 4364) + %éo + Z'hl4iz—'2(2)7

s 4 2 59 »
S€o =1 (—@50 + 1361 —

§e3 =i (— o+ 308y — Wy 4 8g, Az 16ip, 4 ypaT?D)
(4.15)
where after Taylor expansion we have
(9 . N
TEQ; %wamaz (07 3) Ummmmz (0, 8)
. S
~i2) _ | 1Y | —5Uz222(0, 5) 0 9
Ty = . = 12, +h +0O(h7).
B T2(2) %Uzmrx(oa 5) LA 0 ( )
T3(2) %Umm(() S) — 19 xmzzx(oas)
T
(4.16)

Note that in this case the leading term vanishes and the last term in (4.16)
is of the same order as the interior truncation error, and can be estimated
togeher with it.

21



Away from the boundary we need to include both admissible roots (see
lemma 4.2) to express the solution as

£;(3) = o1r] 2 (3) + 0ok T2(8), j=2,3,...,

and get a system of equations for £yp,€1,01 and 02. At § = 0 we express
£5(0), £3(0), £4(0), and é5(0) in terms of o1 and o2. From (4.15) we get

(0) 122
-3 Ky —4 _122 5
1 2_1 & o1
59 02 _
5 5 (4055”2 = 59557 + 110) _es 5 | | g
— H@k)? —64(s)2 + 118887 —59) 1 0 &

c(0)

Using lemma 4.2 we have

-3 3-4y3 12 5

_ _ 8}

1 1 8 2
CO=1 5 8,125 88 _s |

431 4%)7 438 43 43

~15 a5 —1V3 1 0

which is is non-singular. Now (4.8) and (4.9) follow as in the m = 1 case.
The boundary error is here of order 5.

4.3 Proof of theorem 3 for interior order 6

Following exactly the same approach we find that the solution of (4.3) is
of the form

£;(8) = o1kl 3 (3) + 0okl P (3) + o3kt T2 (3), j=3,4,...,
and from (4.3) we have a linear system for &, €1, €9, 01, 09 and o3. We get
O(é)E:hE’Tg), Y = [0'1 UQO'SéOéléQ]T,

where C'(0), given in appendix B, is non-singular. The truncation error in
this case is to leading order ||Tj(33) | ~ |Uszaza(0,s)|, which does not vanish
at the boundary. Therefore the boundary error will be of order h%. We
can, as above, use the equation to express the truncation error in terms of
time derivatives, enabling (4.8) and (4.9) follow as in the m = 1,2 cases.

5 Numerical experiments
In this section numerical experiments are carried out to corroborate our

theoretical results. We consider how the accuracy of the solution is affected
by the lower order of accuracy near the boundaries.
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In the analysis we consider half-plane problems with only one bound-
ary condition. For the purpose of numerical simulations boundary condi-
tions need to be imposed on all computational boundaries. In the one-
dimensional setting with IV grid points, the penalty contribution, corre-
sponding to weakly implemented Dirichlet conditions, in equation (3.5) is

—TP715T(Eou — En_ju), with 7 =1.

Corresponding boundary conditions are imposed in the y-dimension in the
two-dimensional case.

We discretize in time, using an exponential integrator. The basic idea is
to exploit that there exists an exact solution to the semi-discrete Schrodinger
equation (3.5) with weak boundary conditions (where 7 = 4) and initial
conditions u(tg) = ugp, given by

u(t) = e HE0)yy H=—Q+ P 1ST(Ey— Ex_1).

This type of exponential expression can be used to propagate the Schrodinger
equation in time. Instead of taking the full matrix exponential, a few impor-
tant eigenvalues and eigenvectors of H can be generated, and the relation
between the solution at time t + At and ¢ can be expressed as

u(t + At) = e ALy (1) m T IVAV T AL (1) = e m MY Ly ) - (5.1)

where A is a diagonal matrix with the generated eigenvalues on the di-
agonal and the corresponding eigenvectors constitute the columns of the
matrix V. The last term of (5.1) is reasonable to evaluate numerically since
A is a diagonal matrix of modest size. In our numerical experiments the
time-propagation is carried out according to the exponential propagator
(5.1), where a smaller subspace of eigenvalues and eigenvectors are com-
puted using the Lanczos algorithm. The size of the Krylov subspace is
chosen adaptively in order to fulfill a given accuracy requirement, whereas
the time step is fixed. Since we investigate the accuracy of the semi-discrete
system, the temporal error should preferably be kept smaller than the er-
ror that arise from the spatial discretization. For details on the temporal
discretization we refer to [13].

Remark: A central finite difference discretization with periodic bound-
ary conditions leads to the corresponding spatial discretization matrix @
being Hermitian. Thus, eigenvalues and eigenvectors of ) can be com-
puted with the Lanczos scheme. The weakly imposed boundary conditions
affect the structure of the spatial discretization matrix so that H is not
Hermitian, and instead the Arnoldi iteration for general matrices could be
used. However, by the coordinate transformation w = P/2u, the spatial
discretization matrix for the corresponding equation in w, P*/2HP~1/2 is
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Hermitian, and we can compute with the Lanczos algorithm by solving for
w. In two dimensions we have PY/2 = P}/? g py/?.

We perform numerical computations in one and two dimensions with a
traveling Gaussian, similar to the experiment displayed in figure 1. Starting

with the initial conditions
u(x,0) = ¢k=(@—w0)~(2=20)* (5.2)
in one dimension, and
u(z,y,0) = ik (z—20)—(@—w0)*+iky (y—yo)—(y—y0)° (5.3)

in two dimensions, the Gaussian is propagated until it reaches the bound-
ary. In the free boundary case, an exact solution exist for this problem.
However, since we wish to investigate how the reduced accuracy near the
boundaries affects the convergence rate, we compute the error as the dif-
ference between consecutive solutions, where the grid size is reduced by a
factor two.

The Ils-error and [.-error of the difference between the consecutive nu-
merical solutions computed with grid size 2h and h, v?" and v”, where u"
is projected onto the coarser grid, are in each set of experiments computed
at some final time T as

N-1
[ —uP, = (|20 ) Ju2h —ulf?,
=0
h h h h
e = o = | e o — ],
in one dimension and
Ni1—1Ny—1
||u2hm,2hy —U,h‘”’hy I = 2h, 2h Z Z | 2h£,2h h.r_'7hy|2’
=0 4=0
Hu%”’%y — uh’”’hyH = max max |u?h”’2h” — u}-l-””’hy|,
0<i<N;—10<5<Np—1 ¥ *J

in two dimensions. Convergence rates are computed as
[[u?" — u"]]
=—log| —F—5+ | /log(2).
e (1 ) /1ox 2
We have used initial data (5.2) with k, = 10, 9 = 0 in the one-

dimensional computations and initial data (5.3) with k, = 8, k, = 6,
2o = 0, yo = 0 in the two-dimensional computations, on the computational
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domains [—6,6] and [—6,6]2, respectively. All simulations are run until
T = 0.25 using the time step At =1-107%.

The errors in the lo- and [,-norm and the convergence rates are dis-
played in tables 1-4 for the one-dimensional experiments and in tables 5-8
for the two-dimensional experiments. The convergence rates in the one-
dimensional experiments behave as expected. In the second and fourth
order cases, we expect second and fourth order convergence both in Is-
norm and maximum-norm, which we clearly get. For order six, the analysis
predicts the boundary error to be of order five. The convergence rate in
maximum-norm does display 5th order convergence, whereas the ls-error
rate is closer to order 5.5. A possible reason for this is that the modes
corresponding to the admissible root close to one when s is small has not
yet propagated and reached the whole domain. In that case the boundary
error is only localized to a small portion of the domain and one half or-
der of accuracy will be gained. We have not done the theoretical analysis
in the 8th order case. However, the experiments suggest that we get the
same pattern as for the lower orders. Here, the leading order term in the
truncation error is of even order and disappears on the boundary. Thus,
we expect to gain one additional order (with respect to the two orders al-
ready gained) so that we get 7th order convergence, which we also get for
N = 1601, see table 4. As in the 6th order case, the convergence rate for
the ls-error is a half order higher than the rate for the [ .-error. By visu-
alizing the error, we conclude that the reduction of the convergence rate
in lo-norm for N = 3201, denoted by * in table 4, is due to accumulated
round-off errors.

In the two-dimensional experiments, the convergence rates in the second
and fourth order cases, displayed in tables 5 and 6, behave as expected,
i.e. we get second and fourth order convergence rate, respectively. In table
7, the 6th order experiments shows 5th order convergence rate in ls-norm
and approaching 5th order from below in maximum-norm, cf. the one-
dimensional simulations in table 3. For the 8th order simulations with
N < 801, we see the expected 7th order convergence in ls-norm in table
8. We get 6th order convergence rate in maximum-norm, which is one
order lower than expected. However, for the finest grid, N = 1601, the
convergence rates decrease significantly. The lower convergence rate is
due to dominating errors, approximately of order 1077, localized at the
corners. We believe these are caused by singularities due to the non-smooth
boundary. The additional row in table 8 with N = 1601* corresponds to the
8th order simulation with N = 1601, where points closer than ten points
away from a boundary have been excluded before computing the errors
and convergence rates. Here, we can see that we get 6th order convergence
rate of the [ .-error if the boundary points are excluded. The Iy-error
convergence rate on the other hand is influenced by accumulated round-off
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errors, and we see that the [s-error convergence is not affected so much by
the corner points. In realistic computations we expect the overall errors to
be larger than the error from corners (of order 1077), so that the corner
errors will not play an important role.

N Ju—=u", v e, @,
51 = - - —
101 1.51 9.60- 10" - -
201 1.87 1.45 -0.30 -0.60

401 6.85-1071 6.73-1071 1.44  1.12
801 1.78-107¢ 2.09-1071 1.94  1.69
1601  4.48-1072 5.46 - 1072 1.99 1.93
3201  1.12-1072 1.38-1072 2.00 1.99

Table 1: Errors for 2nd order spatial discretization, one-dimensional simu-
lations.

N =, =l @ o
51 - - - -
101 1.66 9.18-10"1 -

201  6.68-10! 7.09-107' 131 0.37
401  5.04-1072 6.76-102  3.73 3.39
801  3.13-1073 413-1073  4.01 4.03
1601  1.97-10~* 2.63-107% 3.99 3.97
3201 1.24-107° 1.66-107°  3.99 3.99

Table 2: Errors for 4th order spatial discretization, one-dimensional simu-
lations.

N = @ = an
51 - - - -
101 1.74 9.72-1071 -

201 2.23-1071 2.75-1071 2,96 1.82
401  4.24-1073 6.08-107  5.71 5.50
801  9.03-107° 3.28-107% 555 4.21
1601  2.14-10°S 1.28-107° 5.40 4.67
3201  4.41-10°8 423-1007  5.60 4.92

Table 3: Errors for 6th order spatial discretization, one-dimensional simu-
lations.
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N [ =, v =i ", @, a.
51 - - - -
101 1.61 1.15 - -
201 4.50-1071 5.43-1071 1.83 1.08
401 4.96-1073 1.06-1072  6.50 5.68
801  3.84-107° 1.63-107*  7.01 6.02
1601  2.10-1077 1.27-1076 751 7.00
3201 4.52-107° 1.07-107%  5.54* 6.90
Table 4: Errors for 8th order spatial discretization, one-dimensional simu-
lations.
N Hu2h1,2hy _ uhz,hy ”l2 Hu2h1,2hy _ uhx,hy ”lw a, q..
51 - - - -
101 1.92 1.06 - -
201 1.53 9.60-10~1 0.32 0.14
401 4.47-1071 2.60-1071 1.78 1.89
801 1.14-1071 6.47 - 1072 1.98 2.01
Table 5: Errors for 2nd order spatial discretization, two-dimensional simu-
lations.
N B2 — gt o2 —afe g Q.
51 — — — —
101 1.96 1.14 - -
201 2.85-1071 1.64-1071 2.79  2.80
401 1.94 - 1072 1.10 - 1072 3.87 3.90
801 1.24-1073 7.01-107% 3.97 3.97
Table 6: Errors for 4th order spatial discretization, two-dimensional simu-
lations.
N [P 2 — el [ uZre?fr —alebol . q a
51 - - - -
101 1.41 8.38-1071 - -
201 5.61-102 3.51-1072 4.65 4.58
401 1.03-1073 7.50 - 1074 5.76  5.55
801 1.94-107° 4.32-107° 5.74  4.12
1601 6.40 - 107 1.66 - 1076 4.92 4.70

Table 7: Errors for 6th order spatial discretization, two-dimensional simu-

lations.
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N e —ute ]y, flutte Pty — ety g, q

51 - — — —
101 9.75-10"1 5.75-1071 - -
201 6.39-102 6.15-1072 3.93 3.22
401 7.35-1074 9.87-107* 6.44 5.96
801 5.02-106 1.69-10° 7.19 5.87
1601 3.35-107 1.71-10°6 3.90 3.30

1601* 3.17-10~7 2.58 107" 3.99 6.03

Table 8: Errors for 8th order spatial discretization, two-dimensional simu-
lations.

In order to illustrate the efficiency in using higher order methods, table
9 displays the ls-error obtained using different orders of spatial discretiza-
tion with the same grid density, and the required number of grid points for
respective order to obtain an error smaller than 10~2. For a fair compar-
ison, the computational complexity should be considered for methods of
different orders, as a denser structure of the spatial discretization matrix
also affects the efficiency in the time-stepping. Figure 3 shows how the
error depends on the CPU time. Clearly, as seen in table 9 and figure 3, it
pays off to use higher order methods. In order to determine how the 8th
order method compares to the 6th order method, it would be interesting
to consider other aspects, such as the effect of local grid refinement and
parallelization aspects.

order Iy-error (N=801) Grid points (l-error < 10~2)

2 1.78 107! —

4 3.13-1073 801
6 9.03-107° 401
8 3.84-107° 401

Table 9: Comparison of errors, one-dimensional simulations.
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Figure 3: ls-error as a function of CPU time for different order of spatial
discretizations, one-dimensional simulations.

6 Conclusions

In this paper we extend the SBP-SAT framework to the Schrédinger equa-
tion. We derive stability conditions for the Schrédinger equation with ho-
mogeneous Dirichlet boundary conditions and analyze the accuracy of the
method using normal mode analysis. For SBP operators of interior order
2m with boundary stencils of order m, global accuracy of order m + 2 is
shown for m > 2 (global accuracy of order 2 for m = 1).

The accuracy analysis is a general approach and can very well be used
for other equations, for which a stability estimate exists. In the general
case, for an equation of order ¢, where the boundary truncation error is of
order m, we can hope for errors ~ h?t™ see also [9].

The theoretical results of stability and accuracy are verified in numerical
simulations. We conclude by the numerical experiments that higher order
methods pays off even for one-dimensional problems of modest size. We
expect that a corresponding comparison in higher dimensions would be
even more advantageous for higher order methods.

An additional way to increase efficiency in the simulations is to in-
clude local grid refinement in the framework. Accuracy and stability at
non-conforming grid interfaces for the Schrodinger equation, that allow for
structured adaptive mesh refinement, is the topic of a forthcoming paper.
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A Proof of lemma 2.1

We want to prove that w? Rw > ahw% v wT

ahFEy > 0. We have

Ry

(w1, wa, ..

and

As

.) so that R —

We will need that Ry = Ry — Es — aFy > 0, for some a > 0, where

By =

00 0
00 0],
00 1

Ey = diag(1,0,...) and « should be determined. Furthermore, we write
Ai = Ay — Ey, A1 > 0. Then we have

Now let w? = (z7,y"), where o has only three components while y”
(y17 Y2, .-

y Aoy = yT Ay +yi > i

.). Then

w" Rw = h(z" Rox — 2x3y1 + y” Asy)
> h(zT Roz + ax? + a3 — 2x3y1 + y7)

(x3—y1)?

> ahx? = ahw?.
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In order to determine «, we compute the eigenvalues A;, i = 1,2, 3, of Ro,

2
where Ay = 0, Ay 3 = —a;% + \/(a;;) + % (5a— 19—8) We see from

the expression under the square root that Ry is positive semi-definite for
a< % = 0.4. Thus, we have proved lemma 2.1 with o = 0.4.

B (C(0) for Dirichlet boundary conditions, or-
der 6

The matrix C(0) for Dirichlet boundary conditions, order 6, is given by

2.9794  3.3686 — 0.023057  3.3686 + 0.02305¢  —9.3821
0.5705  1.0025 — 0.04695¢  1.0025 + 0.04695¢ 1.8235

8.0245
2.3540

—4.6151 —6.7899 4 0.2266¢ —6.7899 — 0.2266: —4.1363 —4.1376

c0)~ 2.5660  4.5927 —0.1966¢  4.5927 + 0.1966¢ 0.8615

1.1591

—1.2510 —3.1883 +0.2835¢ —3.1883 —0.2835: —0.09514 —0.9157

0.1996 0.3281 — 0.1029: 0.3281 + 0.1029¢  —0.04002

and is non-singluar.

C SBP operators, order 2

Below are the SBP operators, @, P, A, and S for the 2nd order discretiza-
tion, where Q = P~1(—A — EyS).

D=

31

0.1875

—8.2157
—1.8675
8.1084
—-3.5117
1.9876
—0.3471

)
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