Skip to main content
Log in

Efficient Numerical Methods for Strongly Anisotropic Elliptic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study an efficient numerical scheme for a strongly anisotropic elliptic problem which arises, for example, in the modeling of magnetized plasma dynamics. A small parameter ε induces the anisotropy of the problem and leads to severe numerical difficulties if the problem is solved with standard methods for the case 0<ε≪1. An Asymptotic-Preserving scheme is therefore introduced in this paper in a 2D framework, with an anisotropy aligned to one coordinate axis and an ε-intensity which can be either constant or variable within the simulation domain. This AP scheme is uniformly precise in ε, permitting thus the choice of coarse discretization grids, independent of the magnitude of the parameter ε.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams, M.F.: Algebraic multigrid methods for constrained linear systems with applications to contact problems in solid mechanics. Numer. Linear Algebra Appl. 11, 141–153 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ashby, S.F., Falgout, R.D., Fogwell, T.W., Tompson, A.F.B.: A numerical solution of groundwater flow and contaminant transport on the CRAY T3D and C90 supercomputers. Int. J. High Perform. Comput. Appl. 13, 80–93 (1999)

    Article  Google Scholar 

  3. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1992)

    Google Scholar 

  4. Benzi, M., Wathen, A.J.: Some preconditioning techniques for saddle point problems. In: Schilders, W., van der Vorst, H.A., Rommes, J. (eds.) Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, pp. 195–211. Springer, Berlin (2008)

    Chapter  Google Scholar 

  5. Degond, P., Deluzet, F., Navoret, L., Sun, A.-B., Vignal, M.-H.: Asymptotic-preserving particle-in-cell method for the Vlasov-Poisson system near quasineutrality. J. Comput. Phys. 229, 5630–5652 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Degond, P., Deluzet, F., Negulescu, C.: An asymptotic preserving scheme for strongly anisotropic elliptic problems. Multiscale Model. Simul. 8(2), 645–666 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Degond, P., Lozinki, A., Narski, J., Negulescu, C.: An asymptotic preserving method for highly anisotropic elliptic equations based on a micro-macro decomposition. J. Comput. Phys. 231, 2724–2740 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hargreaves, J.K.: The Solar-Terrestrial Environment: an Introduction to Geospace—the Science of the Terrestrial Upper Atmosphere, Ionosphere and Magnetosphere. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  9. Higham, N.J., Tisseur, F.: A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl. 21(4), 1185–1201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hunsucker, R.D., Hargreaves, J.K.: The High-Latitude Ionosphere and Its Effects on Radio Propagation. Cambridge Atmospheric and Space Science Series. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  12. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kelley, M.C., Swartz, W.E., Makela, J.J.: Mid-lattitude ionospheric fluctuation spectra due to secondary E×B instabilities. J. Atmos. Sol.-Terr. Phys. 66, 1559–1565 (2004)

    Article  Google Scholar 

  14. Keskinen, M.J., Ossakow, S.L., Fejer, B.G.: Three-dimensional nonlinear evolution of equatorial ionospheric spread-F bubbles. Geophys. Res. Lett. 30, 41–44 (2003)

    Article  Google Scholar 

  15. Krzyzanowski, P.: A class of block smoothers for multigrid solution of saddle point problems with application to fluid flow. In: Proceedings of PPAM’2003, pp. 1006–1013 (2003)

    Google Scholar 

  16. Manku, T., Nathan, A.: Electrical properties of silicon under nonuniform stress. J. Appl. Phys. 74, 1832 (1993)

    Article  Google Scholar 

  17. Rishbeth, H., Garriott, O.K.: Introduction to Ionospheric Physics [by] Henry Rishbeth [and] Owen Garriott, K. International geophysics series, vol. 14, Academic Press, New York (1969). Revision and expansion of Stanford Electronics Laboratories report SU-SEL-64-111, issued in 1964 under title: Introduction to the ionosphere and geomagnetism. Bibliography: pp. 275–309

    Google Scholar 

  18. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 7(3), 856–859 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schenk, O., Gartner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 20(3), 475–487 (2004)

    Article  Google Scholar 

  20. Schenk, O., Waechter, A., Hagemann, M.: Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization. Comput. Optim. Appl. 36(2–3), 321–341 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saito, N.: An interpretation of the Scharfetter-Gummel finite difference scheme. In: Proc. Japan Acad. Ser. A, vol. 82, pp. 187–191 (2006)

    Google Scholar 

  22. Tréguier, A.-M.: Modélisation numérique pour l’océanographie physique. Ann. Math. Blaise Pascal 9(2), 345–361 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tsuchiya, T., Yoshida, K., Ishioka, S.: Yamamoto’s principle and its applications to precise finite element error analysis. J. Comput. Appl. Math. 152(1–2), 507–532 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, W.-W., Feng, X.-C.: Anisotropic diffusion with nonlinear structure tensor. Multiscale Model. Simul. 7(2), 963–977 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Yang.

Additional information

This work has been supported by the Agence Nationale de la Recherche (ANR) under contract IODISSEE (ANR-09-COSI-007-02). The first two authors would like to express their gratitude to G. Gallice and C. Tessieras from CEA-Cesta for bringing their attention to this problem. All the authors would like to acknowledge Pierre Degond for fruitful discussions and his help for improving this paper.

Appendix: 1D Simulations for Heterogeneous Anisotropy Ratios with Steep Gradients

Appendix: 1D Simulations for Heterogeneous Anisotropy Ratios with Steep Gradients

In this section, we detail different procedures to deal with huge variations in the anisotropy intensities. A slightly modified 1D framework is investigated in order to simplify the presentation of the different approaches used in Sect. 3.3 for the 2D simulations. The 1-dimensional SP-model now reads

$$ \left \{ \begin{array}{l@{\quad}l} -\displaystyle\frac{\mathsf{d}}{\mathsf{d}z} \biggl(\frac{1}{\varepsilon (z)}\frac{\mathsf{d}u}{\mathsf{d}z} \biggr)+u=f,&\text{in }\varOmega_z,\\[12pt] \displaystyle\frac{\mathsf{d}}{\mathsf{d}z}u=0,&\text{on }\partial\varOmega_z. \end{array} \right . $$
(A.1)

where u is the unknown of the problem, ε is a positive function of z and Ω z =[0,L z ]. Note that Eq. (A.1) is well-posed for ε(z)>0. The uniqueness of the solution in the 1D case is achieved by adding a term in the equation. This was not needed in the 2D case, due to the presence the derivative in the second direction x. Taking now ε(z):=δχ(z) and passing to the limit δ→0, yields the degenerate problem

$$ \left \{ \begin{array}{l@{\quad}l} -\displaystyle\frac{\mathsf{d}}{\mathsf{d}z} \biggl(\displaystyle\frac{1}{\chi(z)}\frac{\mathsf{d}u}{\mathsf{d}z} \biggr)=0,&\text{in}\ \varOmega_z,\\[12pt] \displaystyle\frac{\mathsf{d}}{\mathsf{d}z}u=0,&\text{on}\ \partial\varOmega_z, \end{array} \right . $$
(A.2)

which is ill-posed, since all constants are solutions.

A standard AP-discretization is compared with a non conservative AP-scheme as well as a Harmonic-Mean and a Scharfetter-Gummel AP-scheme.

1.1 A.1 The Standard AP-Scheme

To construct the AP-scheme corresponding to this SP-model, let us decompose u into its mean part \(\bar{u}\) and its fluctuating part u′ and follow the guideline of Sect. 2.1. By integrating equation (A.1) in Ω z , we get the average equation \(\bar{u}=\bar{f}\). Subtracting this equation from (A.1) and introducing the Lagrange multiplier λ, we obtain the following AP-formulation

$$ \left \{ \begin{array}{l} \bar{u}=\bar{f},\\[6pt] \displaystyle\int^{L_z}_0 \biggl[\frac{1}{\varepsilon (z)}\frac{\mathsf{d}u'}{\mathsf{d}z}\frac{\mathsf{d}v'}{\mathsf{d}z}+u'v' \biggr] \mathsf{d}z+\lambda\int^{L_z}_0\frac{1}{\varepsilon (z)}v'\mathsf{d}z =\displaystyle\int^{L_z}_0f'v'\mathsf{d}z,\\[12pt] \quad \quad \forall v'\in H^1(\varOmega_z),\\[12pt] \displaystyle\int^{L_z}_0 u'\mathsf{d}z=0. \end{array} \right . $$
(A.3)

This AP scheme will be discretized by a ℙ1 finite element method. However, note that the difficulty here is the approximation of the high anisotropy-gradients. To face this problem, we shall propose here different methods.

1.2 A.2 Non-Conservative AP-Scheme

In this approach, we try to circumvent the high anisotropy ratio term \(\frac{1}{\varepsilon }\) in the fluctuation equation of (A.3). This is done, by developing \(\frac{\mathsf{d}}{\mathsf{d}z} (\frac{1}{\varepsilon (z)}\frac{\mathsf{d}u'}{\mathsf{d}z} )\), in order to obtain

$$ \frac{\mathsf{d}}{\mathsf{d}z} \bigl(\ln{ \varepsilon (z)} \bigr)\frac{\mathsf{d}u'}{\mathsf{d}z}- \frac{\mathsf{d}^2u'}{\mathsf{d}z^2}+\varepsilon u'=\varepsilon f'. $$
(A.4)

By injecting (A.4) in the AP-reformulation, we get another reformulation, i.e.

$$ \left \{ \begin{array}{l} \bar{u}=\bar{f},\\[6pt] \displaystyle\int^{L_z}_0 \biggl[\frac{\mathsf{d}}{\mathsf{d}z} (\ln{ \varepsilon (z)} )\frac{\mathsf{d}u'}{\mathsf{d}z}v'+\frac{\mathsf{d}u'}{\mathsf{d}z}\frac {\mathsf{d}v'}{\mathsf{d}z}+\varepsilon u'v' \biggr]\mathsf{d}z+\lambda\int^{L_z}_0v'\mathsf{d}z =\int^{L_z}_0\varepsilon f'v'\mathsf{d}z,\\[12pt] \displaystyle\quad \forall v'\in H^1(\varOmega_z),\\[12pt] \displaystyle\int^{L_z}_0 u'\mathsf{d}z=0. \end{array} \right . $$
(A.5)

Again, we shall discretize (A.5) by the ℙ1 finite element method.

1.3 A.3 Harmonic Mean AP-Scheme

The harmonic mean AP scheme is just a special discretization of the AP-formulation (A.3) following the ideas detailed in [21, 23]. To present this approach, let us again consider the partition of Ω z and the basis functions defined in Sect. 2.3.1. Taking now in (A.3) as test functions κ k (z) and replacing u′(z) by \(\sum^{N_{z}+1}_{l=0}\alpha_{l}\kappa_{l}(z)\) give rise for k=1,…,N z to

where

$$p_{k}=\int^{z_{k}}_{z_{k-1}}\frac{1}{\varepsilon (z)}\mathsf{d}z, \qquad q_k=\int^{z_{k+1}}_{z_{k-1}}\frac{1}{\varepsilon (z)}\kappa_k(z)\mathsf{d}z,\qquad f_k=\int^{z_{k+1}}_{z_{k-1}}f'(z)\kappa_k(z)\mathsf{d}z. $$

If we discretize p k by a standard numerical quadrature formula, the obtained scheme will just be a ℙ1 finite element method. However, we will use instead a harmonic mean to approximate p k , i.e.

$$ p_k\approx\Delta z^2 \biggl(\int^{z_{k}}_{z_{k-1}}{ \varepsilon (z)} \mathsf{d}z \biggr)^{-1}. $$

Finally, the integration \(\int^{z_{k}}_{z_{k-1}}{\varepsilon (z)}\mathsf{d}z\) is approximated by a standard numerical quadrature, for example Gauss-Legendre quadrature. By this manner, we obtain the full harmonic mean AP scheme.

1.4 A.4 Scharfetter-Gummel AP-Scheme

The Scharfetter-Gummel AP-scheme is an amelioration of the harmonic mean AP-scheme. In particular a special quadrature formulae is used to approximate p k [21]. Denoting ε(z k ) simply by ε k , we approximate p k as follows

  • if ε k−1ε k ,

  • if ε k−1=ε k ,

    $$ p_k\approx\Delta z\frac{1}{\varepsilon _k}. $$

    where lnε is approximated by \(\sum^{N_{z}+1}_{k=0}\ln \varepsilon _{k}\kappa_{k}\).

1.5 A.5 Numerical Results

To compare these approaches, we take an exact solution of (A.1) defined as

$$ u_e(z):=\varepsilon (z)\cos \biggl(\frac{2\pi}{L_z}z \biggr), $$
(A.6)

with ε(z) defined by expression (3.5). We shall compare the SP-model, the standard AP scheme, the Non-Conservative AP scheme, the Harmonic Mean AP scheme and the Scharfetter-Gummel AP scheme respectively. For this, we choose q=80, ε max=1 and different values for ε min. The relative error of the approximations with the exact solution are gathered in Fig. 6. The results reported in the Fig. 6(c) show that the SP-model can not furnish an accurate approximation of the solution. On the contrary the curves related to the approximation computed by the AP-schemes displayed on Figs. 6(a) and 6(b) demonstrate the robustness of these schemes. The standard AP-scheme as well as the HM-AP scheme appear to be rather unprecise in the region near the anisotropy steep gradients, while the NC-AP scheme exhibits oscillations in the same regions. Finally, the SG-AP scheme provides the best approximation above the different methods proposed.

Fig. 6
figure 6

Comparison between a standard discretization of the SP-model, the AP scheme, the non-conservative AP (NC-AP) scheme, the harmonic mean AP (HM-AP) scheme and the Scharfetter-Gummel AP (SG-AP) scheme on a grid with 25 points. (a) Plots of the approximate solutions computed thanks to the different methods for ε min=10−1; (b) Same plots for ε min=10−10; (c) Relative errors between the exact solution and the approximate ones for both cases ε min=10−1 and ε min=10−10

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besse, C., Deluzet, F., Negulescu, C. et al. Efficient Numerical Methods for Strongly Anisotropic Elliptic Equations. J Sci Comput 55, 231–254 (2013). https://doi.org/10.1007/s10915-012-9630-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9630-7

Keywords

Navigation