Skip to main content
Log in

A Finite Element Recovery Approach to Eigenvalue Approximations with Applications to Electronic Structure Calculations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze a recovery approach for trilinear finite element approximations on locally-refined hexahedral meshes for a class of elliptic eigenvalue problems. In the approach a local high-order interpolation recovery is followed by some gradient averaging based defect correction scheme. It is proved theoretically and shown numerically that our recovery approach can produce highly accurate eigenpair approximations. And we observe from our numerical experiments that the recovered eigenvalue approximation from the gradient averaging based defect correction approximates the exact eigenvalue from below. Furthermore, this approach has been applied to electronic structure calculations to improve the total energy approximations with small extra overheads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ackermann, J., Erdmann, B., Roitzsch, R.: A self-adaptive multilevel finite element method for the stationary Schrödinger equation in three space dimensions. J. Chem. Phys. 101, 7643–7650 (1994)

    Article  Google Scholar 

  2. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  3. Agmon, S.: Lectures on the Exponential Decay of Solutions of Second-Order Elliptic Operators. Princeton University Press, Princeton (1981)

    Google Scholar 

  4. Armentano, M., Duran, R.: Asymptotic lower bounds for eigenvalues by nonconforming finite element methods. Electron. Trans. Numer. Anal. 17, 92–101 (2004)

    MathSciNet  Google Scholar 

  5. Babuska, I., Osborn, J.E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of self-adjoint problems. Math. Comput. 52(186), 275–297 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Babuska, I., Osborn, J.E.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  7. Bangerth, W., Hartmann, R., Kanschat, G.: Deal. II—A general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33, 24:1–24:27 (2007)

    Article  MathSciNet  Google Scholar 

  8. Beck, T.L.: Real-space mesh techniques in density-functional theory. Rev. Mod. Phys. 72, 1041–1080 (2000)

    Article  Google Scholar 

  9. Brauer, J.R.: What Every Engineer Should Know About Finite Element Analysis. Marcel Decker, New York (1993)

    Google Scholar 

  10. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  11. Dai, X., Zhou, A.: Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J. Numer. Anal. 46, 295–324 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dai, X., Shen, L., Zhou, A.: A local computational scheme for higher order finite element eigenvalue approximations. Int. J. Numer. Anal. Model. 5, 570–589 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Fang, J., Gao, X., Gong, X., Zhou, A.: Interpolation based local postprocessing for adaptive finite element approximations in electronic structure calculations. In: Huang, Y., Kornhuber, R., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering XIX. Lecture Notes in Computational Science and Engineering, vol. 78, pp. 51–61. Springer, Berlin (2011)

    Chapter  Google Scholar 

  14. Fattebert, J.-L., Hornung, R.D., Wissink, A.M.: Finite element approach for density functional theory calculations on locally-refined meshes. J. Comput. Phys. 223, 759–773 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, X., Liu, F., Zhou, A.: Three-scale finite element eigenvalue discretizations. BIT Numer. Math. 48(3), 533–562 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 3rd edn. Springer, Berlin (2001)

    MATH  Google Scholar 

  17. Gong, X., Shen, L., Zhang, D., Zhou, A.: Finite element approximations for Schrödinger equations with applications to electronic structure computations. J. Comput. Math. 23, 310–327 (2008)

    MathSciNet  Google Scholar 

  18. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136(3), 864–871 (1964)

    Article  MathSciNet  Google Scholar 

  19. Hu, J., Huang, Y., Shen, H.: The lower approximation of eigenvalue by lumped mass finite element method. J. Comput. Math. 22, 545–556 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965)

    Article  MathSciNet  Google Scholar 

  21. Kronik, L., Makmal, A., Tiago, M.L., Alemany, M.M.G., Jain, M., Huang, X., Saad, Y., Chelikowsky, J.R.: Parsec—the pseudopotential algorithm for real-space electronic structure calculations: recent advances and novel applications to nano-structures. Phys. Status Solidi (b) 243, 1063–1079 (2006)

    Article  Google Scholar 

  22. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Oxford (1975)

    Google Scholar 

  23. Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement. Science Press, Beijing (2006)

    Google Scholar 

  24. Lin, Q., Yang, Y.: Interpolation and correction of finite elements. Math. Pract. Theory 3, 29–35 (1991) (in Chinese)

    MathSciNet  Google Scholar 

  25. Lin, Q., Zhu, Q.: The Preprocessing and Postprocessing for the Finite Element Method. Shanghai Scientific & Technical Publishers, Shanghai (1994) (in Chinese)

    Google Scholar 

  26. Liu, H., Yan, N.: Four finite element solutions and comparison of problem for the Poisson equation eigenvalue. Chin. J. Numer. Math. Comput. Appl. 2, 81–91 (2005) (in Chinese)

    Article  MathSciNet  Google Scholar 

  27. Martin, R.M.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  28. Mo, Z., Zhang, A. (eds.): User’s guide for JASMIN. Technical Report No. T09-JMJL-01 (2009). http://www.iapcm.ac.cn/jasmin

  29. Naga, A., Zhang, Z., Zhou, A.: Enhancing eigenvalue approximation by gradient recovery. SIAM J. Sci. Comput. 28, 1289–1300 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pask, J.E., Klein, B.M., Fong, C.Y., Sterne, P.A.: Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach. Phys. Rev. B 59, 12352–12358 (1999)

    Article  Google Scholar 

  31. Pask, J.E., Sterne, P.A.: Finite element methods in ab initio electronic structure calculations. Model. Simul. Mater. Sci. Eng. 13, 71–96 (2005)

    Article  Google Scholar 

  32. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)

    Article  Google Scholar 

  33. Pulay, P.: Convergence acceleration of iterative sequences in the case of SCF iteration. Chem. Phys. Lett. 73, 393–398 (1980)

    Article  Google Scholar 

  34. Pulay, P.: Improved SCF convergence acceleration. J. Comput. Chem. 3, 556–560 (1982)

    Article  Google Scholar 

  35. Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33, 23–42 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shen, L., Zhou, A.: A defect correction scheme for finite element eigenvalues with applications to quantum chemistry. SIAM J. Sci. Comput. 28, 321–338 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Simon, B.: Schrödinger operators in the twentieth century. J. Math. Phys. 41, 3523–3555 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sterne, P.A., Pask, J.E., Klein, B.M.: Calculation of positron observables using a finite element-based approach. Appl. Surf. Sci. 149, 238–243 (1999)

    Article  Google Scholar 

  39. Suryanarayana, P., Gavini, V., Blesgen, T.: Non-periodic finite-element formulation of Kohn-Sham density functional theory. J. Mech. Phys. Solids 58, 256–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tsuchida, E., Tsukada, M.: Electronic-structure calculations based on the finite-element method. Phys. Rev. B 52, 5573–5578 (1995)

    Article  Google Scholar 

  41. Weinstein, A., Chien, W.: On the vibrations of a clamped plate under tension. Q. Appl. Math. 1, 61–68 (1943)

    MathSciNet  MATH  Google Scholar 

  42. White, S.R., Wilkins, J.W., Teter, M.P.: Finite-element method for electronic structure. Phys. Rev. B 39, 5819–5833 (1989)

    Article  Google Scholar 

  43. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70, 17–25 (2001)

    MathSciNet  MATH  Google Scholar 

  44. Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press, Beijing (2008)

    Google Scholar 

  45. Yang, Y., Zhang, Z., Lin, F.: Eigenvalue approximation from below using non-conforming finite elements. Sci. China Ser. A 53, 137–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yi, N.: A posteriori error estimates based on gradient recovery and adaptive finite element methods. Ph.D. thesis, School of Mathematics and Computational Science, Xiangtan University, Xiangtan (2011)

  47. Zhang, Z., Yang, Y., Chen, Z.: Eigenvalue approximation from below by Wilson’s element. Chin. J. Numer. Math. Appl. 29, 81–84 (2007)

    MathSciNet  Google Scholar 

  48. Zhang, D., Shen, L., Zhou, A., Gong, X.: Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh. Phys. Lett. A 372, 5071–5076 (2008)

    Article  MATH  Google Scholar 

  49. Zienkiewicz, O., Cheung, Y.: The Finite Element Method in Structural and Continuum Mechanics. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Xiaoying Dai, Prof. Xingao Gong, Prof. Lihua Shen, and Dr. Zhang Yang for their stimulating discussions and fruitful cooperations on electronic structure computations. The second author is grateful to Prof. Zeyao Mo for his encouragements. The authors would also like to thank the referees for their constructive comments and suggestions that improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihui Zhou.

Additional information

This work was partially supported by the National Science Foundation of China under grants 10871198, 10971059 and 61033009, the Funds for Creative Research Groups of China under grant 11021101, the National Basic Research Program of China under grants 2011CB309702 and 2011CB309703, and the National High Technology Research and Development Program of China under grant 2010AA012303.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, J., Gao, X. & Zhou, A. A Finite Element Recovery Approach to Eigenvalue Approximations with Applications to Electronic Structure Calculations. J Sci Comput 55, 432–454 (2013). https://doi.org/10.1007/s10915-012-9640-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9640-5

Keywords

Navigation