Skip to main content
Log in

Finite Element Computation of KPP Front Speeds in Cellular and Cat’s Eye Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We compute the front speeds of the Kolmogorov-Petrovsky-Piskunov (KPP) reactive fronts in two prototypes of periodic incompressible flows (the cellular flows and the cat’s eye flows). The computation is based on adaptive streamline diffusion methods for the advection-diffusion type principal eigenvalue problem associated with the KPP front speeds. In the large amplitude regime, internal layers form in eigenfunctions. Besides recovering known speed growth law for the cellular flow, we found larger growth rates of front speeds in cat’s eye flows due to the presence of open channels, and the front speed slowdown due to either zero Neumann boundary condition at domain boundaries or frequency increase of cat’s eye flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abel, M., Cencini, M., Vergni, D., Vulpiani, A.: Front speed enhancement in cellular flows. Chaos 12, 481–488 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Audoly, B., Berestycki, H., Pomeau, Y.: Réaction diffusion en écoulement stationnaire rapide. C. R. Acad. Sci., Sér. 2, Méc. Phys. Chim. Astron. 328, 255–262 (2000)

    MATH  Google Scholar 

  3. Babuška, I., Osborn, J.E.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  4. Babuška, I., Vogelius, M.: Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44, 75–102 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beattie, C.: Galerkin eigenvector approximations. Math. Comput. 69, 1400–1434 (2000)

    MathSciNet  Google Scholar 

  6. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berestycki, H., Hamel, F., Nadirashvili, N.: Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena. Commun. Math. Phys. 253, 451–480 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourlioux, A., Khouider, B.: Rigorous asymptotic perspective on the large scale simulations of turbulent premixed flames. Multiscale Model. Simul. 6, 287–307 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z.: Reservoir simulation: mathematical techniques in oil recovery. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 77. SIAM, Philadelphia (2007)

    Google Scholar 

  10. Chen, Z., Huan, G.-R., Ma, Y.: Computational methods for multiphase flows in porous media. In: Computational Science and Engineering Series, vol. 2. SIAM, Philadelphia (2006)

    Google Scholar 

  11. Childress, S., Soward, A.M.: Scalar transport and alpha-effect for a family of cat’s eye flows. J. Fluid Mech. 205, 99–133 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clavin, P., Williams, F.: Theory of premixed-flame propagation in large-scale turbulence. J. Fluid Mech. 90, 598–604 (1979)

    Article  Google Scholar 

  13. Constantin, P., Kiselev, A., Oberman, A., Ryzhik, L.: Bulk burning rate in passive-reactive diffusion. Arch. Ration. Mech. Anal. 154, 53–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110, 313–355 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eriksson, K., Johnson, C.: Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems. Math. Comput. 60, 167–188 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fannjiang, A., Papanicolaou, G.: Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math. 54, 333–408 (1992)

    Article  MathSciNet  Google Scholar 

  17. Hughes, T.J.R., Brooks, A.N.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (ed.) Finite Element Methods for Convection Dominated Flows. ASME, New York (1979)

    Google Scholar 

  18. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  19. Majda, A., Souganidis, P.: Flame fronts in a turbulent combustion model with fractal velocity fields. Commun. Pure Appl. Math. 51, 1337–1348 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mao, D., Shen, L., Zhou, A.: Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv. Comput. Math. 25, 135–160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nävert, U.: A finite element method for convection-diffusion problems. Ph.D. thesis, Chalmers University of Technology Göteberg (1982)

  22. Nolen, J., Xin, J.: Computing reactive front speeds in random flows by variational principle. Physica D 237, 3172–3177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Novikov, A., Ryzhik, L.: Boundary layers and KPP fronts in a cellular flow. Arch. Ration. Mech. Anal. 184, 23–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  25. Ronney, P.: Some open issues in premixed turbulent combustion. In: Buckmaster, J.D., Takeno, T. (eds.) Modeling in Combustion Science. Lecture Notes in Physics, vol. 449, pp. 3–22. Springer, Berlin (1995)

    Chapter  Google Scholar 

  26. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, vol. 24, 2nd edn. (2008)

    MATH  Google Scholar 

  27. Ryzhik, L., Zlatos, A.: KPP pulsating front speed-up by flows. Commun. Math. Sci. 5, 575–593 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Shen, L., Xin, J., Zhou, A.: Finite element computation of KPP front speeds in random shear flows in cylinders. Multiscale Model. Simul. 7, 1029–1041 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sivashinsky, G.: Cascade-renormalization theory of turbulent flame speed. Combust. Sci. Technol. 62, 77–96 (1988)

    Article  Google Scholar 

  30. Verfüth, R.: A Review of a Posteriori Error Estimates and Adaptive Mesh-Refinement Techniques. Wiley, New York (1996)

    Google Scholar 

  31. Verfüth, R.: Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal. 43, 1766–1782 (2005)

    Article  MathSciNet  Google Scholar 

  32. Williams, F.: Turbulent combustion. In: Buckmaster, J. (ed.) The Mathematics of Combustion, pp. 97–131. SIAM, Philadelphia (1985)

    Chapter  Google Scholar 

  33. Xin, J.: An Introduction to Fronts in Random Media. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 5. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  34. Xin, J., Yu, Y.: Analysis and comparison of large time front speeds in turbulent combustion models. (2011). arXiv:1105.5607

  35. Yakhot, V.: Propagation velocity of premixed turbulent flames. Combust. Sci. Technol. 60, 191–214 (1988)

    Article  MathSciNet  Google Scholar 

  36. Zlatos, A.: Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows. Arch. Ration. Mech. Anal. 195, 441–453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zlatos, A.: Reaction-diffusion front speed enhancement by flows. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28, 711–726 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

LS was partially supported by National Science Foundation of China under grants 10801101, 10871198 and 11171232. JX was partially supported by NSF under grants DMS-0712881, DMS-0911277 and DMS-1211179. AZ was partially supported by the National Science Foundation of China under grants 10871198 and 10971059, the Funds for Creative Research Groups of China under grant 11021101, and the National Basic Research Program of China under grant 2011CB309703. LS would like to thank Dr. Zhiqiang Sheng at Beijing Institute of Applied Physics and Computational Mathematics for providing the Stabilized BICG solver. Part of the data are computed on the supercomputer O3800 in the Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, L., Xin, J. & Zhou, A. Finite Element Computation of KPP Front Speeds in Cellular and Cat’s Eye Flows. J Sci Comput 55, 455–470 (2013). https://doi.org/10.1007/s10915-012-9641-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9641-4

Keywords

Navigation