Skip to main content
Log in

Multilevel Gradient Uzawa Algorithms for Symmetric Saddle Point Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we introduce a general multilevel gradient Uzawa algorithm for symmetric saddle point systems. We compare its performance with the performance of the standard Uzawa multilevel algorithm. The main idea of the approach is to combine a double inexact Uzawa algorithm at the continuous level with a gradient type algorithm at the discrete level. The algorithm is based on the existence of a priori multilevel sequences of nested approximation pairs of spaces, but the family does not have to be stable. To ensure convergence, the process has to maintain an accurate representation of the residuals at each step of the inexact Uzawa algorithm at the continuous level. The residual representations at each step are approximated by projections or representation operators. Sufficient conditions for ending the iteration on a current pair of discrete spaces are determined by computing simple indicators that involve consecutive iterations. When compared with the standard Uzawa multilevel algorithm, our proposed algorithm has the advantages of automatically selecting the relaxation parameter, lowering the number of iterations on each level, and improving on running time. By carefully choosing the discrete spaces and the projection operators, the error for the second component of the solution can be significantly improved even when comparison is made with the discretization on standard families of stable pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Nonlinear Programming. Stanford University Press, Stanford (1958)

    Google Scholar 

  2. Aziz, A., Babuška, I.: Survey lectures on mathematical foundations of the finite element method. In: Aziz, A. (ed.) The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, pp. 1–362. Academic Press, New York (1972)

    Google Scholar 

  3. Bacuta, C.: A unified approach for uzawa algorithms. SIAM J. Numer. Anal. 44(6), 2245–2649 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bacuta, C.: Schur complements on hilbert spaces and saddle point systems. J. Comput. Appl. Math. 225(2), 581–593 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bacuta, C.: Subspace interpolation with applications to elliptic regularity. Numer. Funct. Anal. Optim. 29(1–2), 88–114 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bacuta, C., Bramble, J.H., Pasciak, J.: Using finite element tools in proving shift theorems for elliptic boundary value problems. Numer. Linear Algebra Appl. 10(1–2), 33–64 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bacuta, C., Bramble, J.H., Pasciak, J.: Shift theorems for the biharmonic Dirichlet problem. In: Proceedings for the CAPDE Conference, Recent Progress in Computational and Applied PDEs. Kluwer Academic/Plenum Publishers, Zhangjiajie (2001)

  8. Bacuta, C., Bramble, J.H., Xu, J.: Regularity estimates for elliptic boundary value problems in Besov spaces. Math. Comput. 72, 1577–1595 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Bacuta, C., Bramble, J.H., Xu, J.: Regularity estimates for elliptic boundary value problems with smooth data on polygonal domains. J. Numer. Math. 11(2), 75–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bacuta, C., Mazzucato, A., Nistor, V., Zikatanov, L.: Interface and mixed boundary value problems on $n$-dimensional polyhedral domains. Doc. Math. 15, 687–745 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Bacuta, C., Monk, P.: Multilevel discretization of symmetric saddle point systems without the discrete LBB condition. Appl. Numer. Math. 62(6), 667–681 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bacuta, C., Nistor, V., Zikatanov, L.: Improving the rate of convergence of ‘high order finite elements’ on polyhedra I: apriori estimates: mesh refinements and interpolation, with V. Nistor and L. Zikatanov. Numer. Funct. Anal. Optim. 26(6), 613–639 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bansch, E., Morin, P., Nochetto, R.H.: An adaptive Uzawa FEM for the Stokes problem: convergence without the inf–sup condition. Siam J. Numer. Anal. 40, 1207–1229 (2002)

    Article  MathSciNet  Google Scholar 

  14. Benzi, M., Golub, G.H., Liesen, J.: Numerical solutions of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bornemann, F.A., Deuhard, P.: The cascadic multigrid method for elliptic problems. Numer. Math. 75, 135–152 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Braess, D.: Finite Elements. Springer, New York (1992)

    Book  MATH  Google Scholar 

  17. Braess, D., Dahmen, W.: A cascadic multigrid algorithm for the Stokes problem. Numer. Math. 82, 179–191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Braess, D., Dahmen, W.: A cascadic multigrid algorithm for the Stokes equations. Numer. Math. 82(2), 179–191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Braess, D., Sarazin, R.: An efficient smoother for the Stokes problem. Appl. Numer. Math. 23(1), 3–19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bramble, J.H., Pasciak, J.E.: A new approximation technique for div-curl systems. Math. Comput. 73, 1739–1762 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Bramble, J.H., Pasciak, J.E., Kolev, T.: A least-squares method for the time-harmonic Maxwell equations. J. Numer. Math. 13, 237–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bramble, J.H., Pasciak, J.E., Vassilevski, P.S.: Computational scales of Sobolev norms with application to preconditioning. Math. Comput. 69, 463–480 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Bramble, J.H., Pasciak, J., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. Siam J. Numer. Anal. 34, 1072–1092 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bramble, J.H., Zhang, X.: The analysis of multigrid methods. In: Ciarlet, P., Lions, J.L. (eds.) Handbook for Numerical Analysis, vol. VII, pp. 173–415. North Holland, Amsterdam (2000)

    Google Scholar 

  25. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  26. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  27. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Anal. Numer. 8(R-2), 129–151 (1974)

    Google Scholar 

  28. Dahlke, S., Dahmen, W., Urban, K.: Adaptive wavelet methods for saddle point problems: optimal convergence rates. Siam J. Numer. Anal. 40, 1230–1262 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Lecture Notes in Mathematics 1341. Springer, Berlin (1988)

  30. Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. Siam J. Numer. Anal. 31, 1645–1661 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Elman, H.C., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers. Oxford Science Publications, Oxford (2005)

    MATH  Google Scholar 

  32. Fortin M., Glowinski R.: Augmented Lagrangian methods: applications to the numerical solutions of boundary value problems. In: Studies in Mathematics and Applications, vol. 15. North-Holland, Amsterdam (1983)

  33. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  34. Grisvard, P.: Singularities in Boundary Value Problems. Masson, Paris (1992)

    MATH  Google Scholar 

  35. Kellogg, R.B.: Interpolation between subspaces of a Hilbert space. Technical note BN-719. Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park (1971)

  36. Kondratyuk, Y., Stevenson, R.: An optimal adaptive finite element method for the Stokes problem. SIAM J. Numer. Anal. 46, 746–775 (2008)

    Article  MathSciNet  Google Scholar 

  37. Morin, P., Nochetto, R.H., Siebert, G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38(2), 466–488 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nochetto, R.H., Pyo, J.: Optimal relaxation parameter for the Uzawa method. Numer. Math. 98, 695–702 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  40. Sayas, F.J.: Infimum–supremum. Bol. Soc. Esp. Mat. Apl. 41, 19–40 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Verfürth, R.R.: A Review of A Posterirori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1996)

    Google Scholar 

  42. Xu, J., Zikatanov, L.: Some observations on Babuška and Brezzi theories. Numer. Math. 94(1), 195–202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by NSF, DMS-0713125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Bacuta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacuta, C., Shu, L. Multilevel Gradient Uzawa Algorithms for Symmetric Saddle Point Problems. J Sci Comput 57, 105–123 (2013). https://doi.org/10.1007/s10915-013-9697-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9697-9

Keywords

Mathematics Subject Classification (2000)

Navigation