Skip to main content
Log in

Image Restoration via Tight Frame Regularization and Local Constraints

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose two variational image denosing/deblurring models which combine tight frame regularization with two types of existing local constraints. Additive white Gaussian noise is assumed in the models. By Lagrangian multiplier method, the local constraints correspond to the fidelity term with spatial adaptive parameters. As the fidelity parameter is bigger in the image regions with textures than in the cartoon region, our models can recover more texture while denoising/deblurring. Fast numerical schemes are designed for the two models based on split Bregman (SB) technique and doubly augmented Lagrangian (DAL) method with acceleration. In the experiments, we show that the proposed models have better performance compared with the existing total variation based image restoration models with global or local constraints and the frame based model with global constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)

    Article  MathSciNet  Google Scholar 

  2. Almansa, A., Ballester, C., Caselles, V., Haro, G.: A TV based restoration model with local constraints. J. Sci. Comput. 34(3), 209–236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147. Springer, New York (2006)

    Google Scholar 

  4. Bertalmio, M., Caselles, V., Rougé, B., Solé, A.: TV based image restoration with local constraints. J. Sci. Comput. 19(1), 95–122 (2003)

    Google Scholar 

  5. Cai. J.-F., Dong, B., Osher, S., Shen, Z.: Image restoration: total variation, wavelet frames, and beyond. J. Am. Math. Soc. (to appear) (2012)

  6. Cai, J.-F., Osher, S., Shen, Z.: Split bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337–369 (2009)

    Article  MathSciNet  Google Scholar 

  7. Cai, J.-F., Shen, Z.: Framelet based deconvolution. J. Comput. Math. 28(3), 289–308 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    MathSciNet  Google Scholar 

  9. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dong, B., Shen, Z.: MRA-Based Wavelet Frames and Applications. UCLA CAM reports 10–69 (2010)

  12. Dong, B., Zhang, Y.: An efficient algorithm for \(l_0\) minimization in wavelet frame based image restoration. Technical report, UCLA CAM reports, cam11-66 (2011)

  13. Dong, Y., Hintermíźller, M., Camacho, M.R.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40(1), 82–104 (2011)

    Article  MATH  Google Scholar 

  14. Eckstein, J., Bertsekas, D.P.: On the douglasałrachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Faurre, P.: Analyse numéique. Notes d’optimisation. École Polytechnique. Ed. Ellipses (1988)

  16. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Studies in mathematics and its applications, chapter 6, pp. 299–331. North-Holland, Amsterdam (1983)

    Google Scholar 

  17. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Variational denoising of partly textured images by spatially varying constraints. IEEE Trans. Image Process. 15(8), 2281–2289 (2006)

    Article  Google Scholar 

  18. Goldstein, T., Osher, S.: The split bregman method for l1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hahn, J., Wu, C., Tai, X.C.: Augmented lagrangian method for generalized tv-stokes model. J. Sci. Comput. 50(2), 235–264 (2012)

    Google Scholar 

  20. Hintermüller, M., Rincon-Camacho, M.M.: Expected absolute value estimators for a spatially adapted regularization parameter choice rule in l1-tv-based image restoration. Inverse Probl. 26(8), 85005–85034 (2010)

    Article  Google Scholar 

  21. Iusem, A.N.: Augmented lagrangian methods and proximal point methods for convex optimization. Investigación Operativa 8, 11–49 (1999)

    Google Scholar 

  22. Li, F., Ng, M.K., Shen, C.: Multiplicative noise removal with spatially varying regularization parameters. SIAM J. Imaging Sci. 3(1), 1–22 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lintner, S., Malgouyres, F.: Solving a variational image restoration model which involves \(l^\infty \) constraints. Inverse Probl. 20, 815–831 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma, L., Mosian, L., Yu, J., Zeng, T.: Stable method in solving total variation dictionay model with \(l^\infty \) constraints. HongKong Baptist University (HKBU), Technical report (2011)

  25. Malgouyres, F.: Mathematical analysis of a model which combines total variation and wavelet for image restoration. J. Inf. process. 2(1), 1–10 (2002)

    Google Scholar 

  26. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rudin, L.I., Osher, S.: Total variation based image restoration with free local constraints. In: Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference, 1, pp. 31–35. IEEE (1994)

  28. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  29. Setzer, S.: Operator splittings, bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92(3), 265–280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Setzer, S., Steidl, G., Teuber, T.: Deblurring poissonian images by split bregman techniques. J. Vis. Commun. Image Represent. 21(3), 193–199 (2010)

    Article  MathSciNet  Google Scholar 

  31. Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19(6), S165–S187 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for euler’s elastica model using augmented lagrangian method. SIAM J. Imaging Sci. 4, 313–344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, C., Tai, X.C.: Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zeng, T., Ng, K.: On the total variation dictionary model. IEEE Trans. Image Process. 19(3), 821–825 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieyong Zeng.

Additional information

This work is supported by the 973 Program (2011CB707104), the National Science Foundation of China (11001082, 11271049), and RGC 203109, 211710, 211911 and RFGs of HKBU.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Zeng, T. Image Restoration via Tight Frame Regularization and Local Constraints. J Sci Comput 57, 349–371 (2013). https://doi.org/10.1007/s10915-013-9709-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9709-9

Keywords

Navigation