Skip to main content
Log in

Image Segmentation Using Euler’s Elastica as the Regularization

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The active contour segmentation model of Chan and Vese has been widely used and generalized in different contexts in the literature. One possible modification is to employ Euler’s elastica as the regularization of active contour. In this paper, we study the new effects of this modification and validate them numerically using the augmented Lagrangian method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image reconstruction. Interfaces Free Bound. 5, 63–81 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Masnou, S.: On a Variational Problem Arising in Image Reconstruction, vol. 147. Birkhauser, Basel (2004)

    Google Scholar 

  3. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via Gamma convergence. Comm. Pure Appl. Math. 43, 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bae, E., Shi, J., Tai, X.-C.: Graph cuts for curvature based image denoising. IEEE Trans. Image Process. 20(5), 1199–1210 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bertozzi, A.L., Greer, J.B.: Low curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes. Comm. Pure Appl. Math. 57, 764–790 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. Computer Graphics, SIGGRAPH (2000)

  7. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours. Numerische Mathematik 66, 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  9. Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chan, T., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  11. Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of denoising and segmentation models. SIAM J. Appl. Math. 66, 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan, T., Kang, S.H., Shen, J.H.: Euler’s elastica and curvature based inpaintings. SIAM J. Appl. Math 63(2), 564–592 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Chan, T., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. vol. 11(2), pp. 130–141, June 2000 (Special Issue of “Scale Space Theories in Computer Vision ’99”). June (2000)

  14. Cremers, D., Tischhuser, F., Weickert, J., Schnrr, C.: Diffusion snakes: introducing statistical shape knowledge into the Mumford-Shah functional. Int. J. Comput. Vis. 50(3), 295–313 (2002)

    Article  MATH  Google Scholar 

  15. El-Zehiry, N., Grady, L.: Fast global optimization of curvature. In: Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and, Pattern Recognition, pp. 3257–3264, (2010)

  16. Elsey, M., Esedoḡlu, S.: Analogue of the total variation denoising model in the context of geometry processing. SIAM J. Multiscale Model. Simul. 7(4), 1549–1573 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Esedoḡlu, S., Shen, J.: Digital inpainting based on the Mumford-Shah-Euler image model. Eur. J. Appl. Math. 13, 353–370 (2002)

    MathSciNet  Google Scholar 

  18. Kanizsa, G.: Organization in Vision: Essays on Gestalt Perception. Praeger, New York (1979)

    Google Scholar 

  19. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  Google Scholar 

  20. Li, C., Kao, C., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy, Comput. Vis. Pattern Recognit. (CVPR), pp. 1–7, (2007)

  21. Lie, J., Lysaker, M., Tai, X.C.: A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Trans. Image Process. 15(5), 1171–1181 (2006)

    Article  Google Scholar 

  22. Lions, P.L., Mercier, B.: Splitting algorithms for the sume of two nonlinear opertors. SIAM J. Numer. Amal. 16, 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Malladi, R., Sethian, J.A., Vemuri, B.C.: A topology independent shape modeling scheme. In: Proceedings SPIE Conference Geometric Methods Computer Vision II, vol. 2031, San Diego, CA, pp. 246–258, (1993)

  24. Masnou, S.: Disocclusion: a variational approach using level lines. IEEE Trans. Image Process. 11, 68–76 (2002)

    Article  MathSciNet  Google Scholar 

  25. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings IEEE International Conference on Image Processing, Chicago, IL, pp. 259–263 (1998)

  26. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nitzberg, M., Mumford, D., Shiota, T.: Filering, Segmentation, and Depth, Lecture Notes in Computer Science, vol. 662. Springer, Berlin (1993)

    Book  Google Scholar 

  28. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed-algorithm based on HamiltonJacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    Google Scholar 

  30. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithm. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  32. Schoenemann, T., Kahl, F., Cremers, D.: Curvature regularity for region-based image segmentation and inpainting: a linear programming relaxation. IEEE Int. Conf. Comput. Vis. (ICCV), (2009)

  33. Schoenemann, T., Kahl, F., Masnou, S., Cremers, D.: A linear framework for region-based image segmentation and inpainting involving curvature penalization, to apppear in Int. J. Comput. Vis. (2012)

  34. Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s Elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4(1), 313–344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Google Scholar 

  36. Wu, C., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, Vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhu, W., Chan, T.: A variational model for capturing illusory contours using curvature. J. Math. Imaging Vis. 27, 29–40 (2007)

    Article  MathSciNet  Google Scholar 

  38. Zhu, W., Chan, T., Esedoḡlu, S.: Segmentation with depth: a level set approach. SIAM J. Sci. Comput. 28, 1957–1973 (2006)

    Google Scholar 

  39. Zhu, W., Tai, X.C., Chan, T.: Augmented Lagrangian method for a mean curvature based image denoising model, To appear in Inverse Problems and Imaging

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhu.

Additional information

This work has been supported by NSF contract DMS-1016504.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Tai, XC. & Chan, T. Image Segmentation Using Euler’s Elastica as the Regularization. J Sci Comput 57, 414–438 (2013). https://doi.org/10.1007/s10915-013-9710-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9710-3

Keywords

Navigation