Skip to main content
Log in

Strong Stability for Runge–Kutta Schemes on a Class of Nonlinear Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we consider Strong Stability Preserving (SSP) properties for explicit Runge–Kutta (RK) methods applied to a class of nonlinear ordinary differential equations. We define new modified threshold factors that allow us to prove properties, provided that they hold for explicit Euler steps. For many methods, the stepsize restrictions obtained are sharper than the ones obtained in terms of the Kraaijevanger’s coefficient in the SSP theory. In particular, for the classical 4-stage fourth order method we get nontrivial stepsize restrictions. Furthermore, the order barrier \(p\le 4\) for explicit SSP RK methods is not obtained. An open question is the existence of explicit RK schemes with order \(p\ge 5\) and nontrivial modified threshold factor. The numerical experiments done illustrate the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta, G., Durán, R.G., Rossi, J.D.: An adaptive time step procedure for a parabolic problem with blow-up. Computing 68(4), 343–373 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dekker, K., Verwer, J.G.: Stability of Runge–Kutta methods for stiff nonlinear differential equations. CWI Monographs, North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  3. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general Runge–Kutta methods. SIAM J. Numer. Anal. 42(3), 1073–1093 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ferracina, L., Spijker, M.N.: An extension and analysis of the Shu-Osher representation of Runge–Kutta methods. Math. Comput. 74, 201–219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gottlieb, S., Ketcheson, D.I., Shu, C.W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38(3), 251–289 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Higueras, I.: Representations of Runge–Kutta methods and strong stability preserving methods. SIAM J. Numer. Anal. 43(3), 924–948 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Higueras, I.: Strong stability for additive Runge–Kutta methods. SIAM J. Numer. Anal. 44(4), 1735–1758 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Horváth, Z.: Positivity of Runge–Kutta and diagonally split Runge–Kutta methods. Appl. Numer. Math. 28(2–4), 309–326 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Horváth, Z.: On the positivity step size threshold of Runge–Kutta methods. Appl. Numer. Math. 53(2–4), 341–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hundsdorfer, W., Spijker, M.N.: Boundedness and strong stability of Runge–Kutta methods. Math. Comput. 80(274), 863–886 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hundsdorfer, W., Koren, B., van Loon, M., Verwer, J.C.: A positive finite-difference advection scheme. J. Comput. Phys. 117(1), 35–46 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59(2), 373–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ketcheson, D.I.: Highly efficient strong stability preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)

    Article  MathSciNet  Google Scholar 

  15. Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48(3), 303–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kraaijevanger, J.F.B.M.: Contractivity of Runge–Kutta methods. BIT 31(3), 482–528 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mehdizadeh Khalsaraei, M.: An improvement on the positivity results for 2-stage explicit Runge–Kutta methods. J. Comput. Appl. Math. 235, 137–143 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. J. Sci. Comput. 17(1), 211–220 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75(253), 183–208 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Comput. 9(6), 1073–1084 (1988)

    Article  MATH  Google Scholar 

  21. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Spijker, M.N.: Contractivity in the numerical solution of initial value problems. Numer. Math. 42(3), 271–290 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Spijker, M.N.: Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems. Math. Comput. 45(172), 377–392 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45(3), 1226–1245 (2008)

    Article  MathSciNet  Google Scholar 

  25. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput. Simul. 62(1–2), 125–135 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, R., Spiteri, R.J.: Linear instability of the fifth-order WENO method. SIAM J. Numer. Anal. 45(5), 1871–1901 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is thankful to the anonymous referees for the comments and remarks on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inmaculada Higueras.

Additional information

Research supported by the Ministerio de Ciencia y Tecnología, Project MTM2011-23203.

Appendix

Appendix

In this section we give the coefficients of several explicit methods from the literature used in the numerical experiments.

Methods (6.2-b) and (6.3-b) are the optimal \(s\) stage order \(s\) explicit RK methods with \(\mathcal{R}(\mathbb A )=1\). Methods (6.2a, b) and (6.3a, b) have been used in [12] in the context of positivity; methods (6.2c, d) and (6.3c, d) have been used in [27].

  • First order method:

    $$\begin{aligned} \begin{array}{c|cc} 0 &{} 0 &{} \\ \frac{3}{4} &{} \frac{3}{4} &{} 0 \\ \hline &{} 0 &{} 1 \end{array} \end{aligned}$$
    (6.1)
  • Second order methods:

    $$\begin{aligned} \begin{array}{ll} \text{(a) } \quad \quad \begin{array}{c|cc} 0 &{} 0 &{} \\ \frac{1}{2} &{} \frac{1}{2} &{} 0 \\ \hline &{} 0 &{} 1 \end{array} &{} \text{(b) } \quad \quad \begin{array}{c|cc} 0 &{} 0 &{} \\ 1 &{} 1 &{} 0 \\ \hline &{} \frac{1}{2} &{} \frac{1}{2}\\ \end{array}\\ \text{(c) } \quad \quad \begin{array}{c|ccc} 0 &{} 0 &{} &{}\\ \frac{1}{3} &{} \frac{1}{3} &{} 0 &{} \\ 1 &{} 0 &{} 1 &{} 0 \\ \hline &{} \frac{1}{2} &{} 0 &{} \frac{1}{2} \end{array} &{} \text{(d) } \quad \quad \begin{array}{l|llll} 0 &{} 0 &{} &{} &{} \\ \frac{2}{3} &{}\frac{2}{3} &{} 0 &{} &{} \\ \frac{2}{3} &{}0 &{} \frac{2}{3} &{} 0 &{} \\ \frac{2}{3} &{}0 &{} 0 &{} \frac{2}{3} &{} 0\\ \hline &{} \frac{1}{4} &{} \frac{1}{4} &{} \frac{1}{4} &{} \frac{1}{4} \end{array} \end{array} \end{aligned}$$
    (6.2)
  • Third order methods

    $$\begin{aligned} \begin{array}{ll} \text{(a) } \quad \quad \begin{array}{c|ccc} 0 &{} 0 &{} &{} \\ \frac{1}{3} &{} \frac{1}{3} &{} 0 &{} \\ \frac{2}{3} &{} 0 &{} \frac{2}{3} &{} 0 \\ \hline &{} \frac{1}{4} &{} 0 &{} \frac{3}{4} \end{array} &{} \text{(b) } \quad \quad \begin{array}{c|ccc} 0 &{} 0 &{} &{} \\ 1 &{} 1 &{} 0 &{} \\ \frac{1}{2} &{} \frac{1}{4} &{} \frac{1}{4} &{} 0 \\ \hline &{} \frac{1}{6} &{} \frac{1}{6} &{} \frac{2}{3}\\ \end{array} \\ \text{(c) } \quad \quad \begin{array}{c|ccc} 0 &{} 0 &{} &{} \\ -\frac{4}{9} &{} -\frac{4}{9} &{} 0 &{} \\ \frac{2}{3} &{} \frac{7}{6} &{} -\frac{1}{2} &{} 0 \\ \hline &{} \frac{1}{4} &{} 0 &{} \frac{1}{4} \end{array} &{} \text{(d) } \quad \quad \begin{array}{c|ccccc} 0 &{} 0 &{} &{} &{} &{} \\ \frac{1}{7} &{} \frac{1}{7} &{} 0 &{} &{} &{}\\ \frac{3}{16} &{} 0 &{} \frac{3}{16} &{} 0 &{} &{} \\ \frac{1}{3} &{} 0 &{} 0 &{} \frac{1}{3} &{} 0 &{} \\ \frac{2}{3} &{} 0 &{} 0 &{} 0 &{} \frac{2}{3} &{} 0\\ \hline &{} \frac{1}{4} &{} 0 &{} 0 &{} 0 &{} \frac{3}{4} \end{array} \end{array} \end{aligned}$$
    (6.3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higueras, I. Strong Stability for Runge–Kutta Schemes on a Class of Nonlinear Problems. J Sci Comput 57, 518–535 (2013). https://doi.org/10.1007/s10915-013-9715-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9715-y

Keywords

Navigation