Skip to main content
Log in

Modified Characteristics Gauge–Uzawa Finite Element Method for Time Dependent Conduction–Convection Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we give the modified characteristics Gauge–Uzawa finite element method (MCGUFEM) for time dependent conduction–convection problems, which is gotten by combining the modified characteristics finite element method and the Gauge–Uzawa method. The stability analysis and the error analysis, which shows that our method is stable and has optimal convergence order, are given. In order to show the effect of MCGUFEM, some numerical results are presented. From the numerical results, we can see that MCGUFEM can simulate the fluid field, temperature field and pressure field very well, and MCGUFEM works better for high Grashoff number \(\kappa \) than GUFEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Buscaglia, G., Dari, E.A.: Implementation of the Lagrange–Galerkin method for the incompressible for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 15, 23–36 (1992)

    Article  MATH  Google Scholar 

  2. Boland, J., Layton, W.: Error analysis for finite element method for natural convection problems. Numer. Funct. Anal. Optimiz. 11, 449–483 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boukir, K., Maday, Y., MéTivet, B., Razafindrakoto, E.: A higer-order characteristics/finite element method for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 25, 1421–1454 (1997)

    Article  MATH  Google Scholar 

  4. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dawson, C.N., Russell, T.F., Wheeler, M.F.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer. Anal. 26(6), 1487–1512 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Douglas Jr, J., Russell, T.F.: Numerical methods for convection-dominaed diffusion problems based on combing the method of charateristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Liu, J.G.: Gauge method for viscous incompressible flows. Commun. Math. Sci. 1(2), 317–332 (2003)

    Google Scholar 

  8. Garcia, J., Cabeza, J., Rodriguez, A.: Two-dimensional non-linear inverse heat conduction problem based on the singular value decomposition. Int. J. Thermal Sci. 48, 1081–1093 (2009)

    Article  Google Scholar 

  9. Guermond, J.L., Shen, J.: On the error estimates of rotational pressure-correction projection methods. Math. Comput. 73, 1719–1737 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Guermond, J.L., Shen, J.: Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41(1), 112–134 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Guermond, J.L., Shen, J.: A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys. 192(1), 262–276 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. He, Y.N., Wang, A.W.: A simplified two-level method for the steady Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 197, 1568–1576 (2008)

    Article  MATH  Google Scholar 

  13. Kim, D., Choi, Y.: Analysis of conduction-natural convection conjugate heat transfer in the gap between concentric cylinders under solar irradiation. Int. J. Thermal Sci. 48, 1247–1258 (2009)

    Article  Google Scholar 

  14. Li, J., Chen, Z.X.: A new local stabilized non conforming finite element method for the Stokes equations. Computing 82, 157–170 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Luo, Z., Chen, J., Navon, I.M., Zhu, J.: An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems. Int. J. Numer. Methods Fluids 60, 409–436 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nochetto, R., Pyo, J.: The gauge-Uzawa finite element method. Part 1: the Navier–Stokes equations. SIAM J. Numer. Anal. 43(3), 1043–1086 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nochetto, R., Pyo, J.H.: The finite element Gauge-Uzawa method. Part II: the Boussinesq equations. Math. Model. Methods Appl. Sci. 16(10), 1599–1626 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nochetto, R., Pyo, J.: Error estimates for semi-discrete gauge methods for the Navier–Stokes equations. Math. Comput. 74(250), 521–542 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pironneu, O.: On the transport-diffusion algorithm and it’s applications to the Navier–Stokes equations. Numer. Math. 38, 309–332 (1982)

    Article  Google Scholar 

  20. Pyo, J., Shen, J.: Gauge-Uzawa methods fot incompressible flows with variable density. J. Comput. Phys. 221, 181–197 (2001)

    Article  MathSciNet  Google Scholar 

  21. Russell, T.F.: Time stepping along charactercteristics with incomplete iteration for a Galerkin approximation of miscible displacement in prous media. SIAM J. Numer. Anal. 22(5), 970–1013 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shen, J., Yang, X.: Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. DCDS-B 8, 663–676 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Si, Z.Y.: Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier–Stokes problems. Numer. Algorithm 59(2), 271–300 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Si, Z.Y., He, Y.N.: A coupled Newton iterative mixed finite element method for stationary conduction-convection problems. Computing 89(1–2), 1–25 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Si, Z.Y., He, Y.N.: A defect-correction mixed finite element method for stationary conduction-convection problems. Math. Prob. Engine. 2011, 370192 (2011). doi:10.1155/2011/370192

  26. Si, Z.Y., He, Y.N., Wang, K.: A defect-correction method for unsteady conduction convection problems I: spatial discretization. Sci. China. Math. 54, 185–204 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Si, Z.Y., He, Y.N., Zhang, T.: A defect-correction method for unsteady conduction-convection problems II: time discretization. J. Comput. Appl. Math. 236(9), 2553–2573 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Si, Z.Y., Shang, Y.Q., Zhang, T.: New one- and two-level Newton iterative mixed finite element methods for stationary conduction-convection problem. Finite Elem. Anal. Des. 47, 175–183 (2011)

    Article  MathSciNet  Google Scholar 

  29. Si, Z.Y., Zhang, T., Wang, K.: A Newton iterative scheme mixed finite element method for stationary conduction-convection problems. Int. J. Comput. Fluid Dyn. 24, 135–141 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sun, H.Y., He, Y.N., Feng, X.L.: On error estimates of the pressure-correction projection methods for the time-dependent Navier–Stokes equations. Int. J. Numer. Anal. Model. 8(1), 70–85 (2011)

    MATH  MathSciNet  Google Scholar 

  31. Temam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires II. Arch. Rat. Mech. Anal. 33, 377–385 (1969)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the referees for their valuable comments, which led to the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Si.

Additional information

This work is supported by Chinese NSF (Grant No. 11226306), the Doctoral Foundation of Henan Polytechnic University (No. B2012-56) and the Natural Science Foundation of Xinjiang Province (Grant No. 2013211B01).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Si, Z., Song, X. & Huang, P. Modified Characteristics Gauge–Uzawa Finite Element Method for Time Dependent Conduction–Convection Problems. J Sci Comput 58, 1–24 (2014). https://doi.org/10.1007/s10915-013-9721-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9721-0

Keywords

Mathematics Subject Classification (2000)

Navigation