Skip to main content
Log in

A Comparison of Iterated Optimal Stopping and Local Policy Iteration for American Options Under Regime Switching

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A theoretical analysis tool, iterated optimal stopping, has been used as the basis of a numerical algorithm for American options under regime switching (Le and Wang in SIAM J Control Optim 48(8):5193–5213, 2010). Similar methods have also been proposed for American options under jump diffusion (Bayraktar and Xing in Math Methods Oper Res 70:505–525, 2009) and Asian options under jump diffusion (Bayraktar and Xing in Math Fin 21(1):117–143, 2011). An alternative method, local policy iteration, has been suggested in Huang et al. (SIAM J Sci Comput 33(5):2144–2168, 2011), and Salmi and Toivanen (Appl Numer Math 61:821–831, 2011). Worst case upper bounds on the convergence rates of these two methods suggest that local policy iteration should be preferred over iterated optimal stopping (Huang et al. in SIAM J Sci Comput 33(5):2144–2168, 2011). In this article, numerical tests are presented which indicate that the observed performance of these two methods is consistent with the worst case upper bounds. In addition, while these two methods seem quite different, we show that either one can be converted into the other by a simple rearrangement of two loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almendral, A., Oosterlee, C.W.: Accurate evaluation of European and American options under the CGMY process. SIAM J. Sci. Comput. 29, 93–117 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barles, G.: Convergence of numerical schemes for degenerate parabolic equations arising in finance. In: Rogers, L.C.G., Talay, D. (eds.) Numerical Methods in Finance, pp. 1–21. Cambridge University Press, Cambridge (1997)

  3. Barles, G., Daher, C.H., Romano, M.: Convergence of numerical shemes for parabolic eqations arising in finance theory. Math. Mod. Methods Appl. Sci. 5, 125–143 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bayraktar, E., Xing, H.: Pricing American options for jump diffusions by iterating optimal stopping problems for diffusions. Math. Methods Oper. Res. 70, 505–525 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bayraktar, E., Xing, H.: Pricing Asian options for jump diffusions. Math. Fin. 21(1), 117–143 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bierbrauer, M., Truck, S., Weron, R.: Modeling electricity prices with regime switching models. In: Computational Science—ICCS 2004, vol. 3039 of Lecture Notes in Computer Science, pp. 859–867. Springer Berlin/Heidelberg (2004)

  7. Bokanowski, O., Maroso, S., Zidani, H.: Some convergence results for Howard’s algorithm. SIAM J. Numer. Anal. 47, 3001–3026 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brennan, J., Schwartz, E.S.: The valuation of American put options. J. Fin. 32, 449–462 (1977)

    Article  Google Scholar 

  9. Briani, A., Camilli, F., Zidani, H.: Approximation schemes for monotone systems of nonlinear second order differential equations: convergence result and error estimate. Diff. Equ. Appl. 4, 297–317 (2012)

    MATH  MathSciNet  Google Scholar 

  10. Chancelier, J., Øksendal, B., Sulem, A.: Combined stochastic control and optimal stopping, and application to numerical approximation of combined stochastic and impulse control. Proc. Steklov Inst. Math. 237, 140–163 (2002)

    Google Scholar 

  11. Chancelier, J., Øksendal, B., Sulem, A.: Combined stochastic control and optimal stopping, and application to numerical approximation of combined stochastic and impulse control. Tr. Mat. Inst. Steklova 237, 149–172 (2002)

    Google Scholar 

  12. Chancelier, J.P., Messaoud, M., Sulem, A.: A policy iteration algorithm for fixed point problems with nonexpansive operators. Math. Methods Oper. Res. 65, 239–259 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, S., Insley, M.: Regime switching in stochastic models of commodity prices: an application to an optimal tree harvesting problem. J. Econ. Dyn. Control 36, 201–219 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, Z., Forsyth, P.A.: Implications of a regime switching model on natural gas storage valuation and optimal operation. Quan. Fin. 10, 159–176 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cont, R., Voltchkova, E.: A finite difference scheme for option pricing in jump diffusion and exponential levy models. SIAM J. Numer. Anal. 43, 1596–1626 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Crepey, S.: About pricing equations in finance. In: Carmona, A.R. (ed.) Paris-Princeton Lectures on Mathematical Finance, pp. 63–203. Springer, Berlin, 2010. Lecture Notes in Mathematics (2003)

  17. Cryer, C.W.: The efficient solution of linear complemetarity problems for tridiagonal Minkowski matrices. ACM Trans. Math. Softw. 9, 199–214 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Forsyth, P.A., Labahn, G.: Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance. J. Comput. Fin. 11(Winter), 1–44 (2008)

    Google Scholar 

  19. Hardy, M.: A regime switching model of long term stock returns. North Am. Actuar. J. 5, 41–53 (2001)

    Article  MATH  Google Scholar 

  20. Howison, S., Reisinger, C., Witte, J.H.: The effect of non-smooth payoffs on the penalty approximation for American options. SIAM J. Financ. Math. (to appear)

  21. Huang, Y., Forsyth, P.A., Labahn, G.: Methods for pricing American options under regime switching. SIAM J. Sci. Comput. 33(5), 2144–2168 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Huang, Y., Forsyth, P.A., Labahn, G.: Combined fixed point and policy iteration for Hamilton-Jacobi-Bellman equations in finance. SIAM J. Numer. Anal. 50, 1849–1860 (2012)

    Article  MathSciNet  Google Scholar 

  23. Ishii, H., Koike, S.: Viscosity solutions for monotone systems of second order elliptic PDEs. Commun. Part. Diff. Equ. 16, 1095–1128 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ishii, H., Koike, S.: Viscosity solutions of a system of nonlinear elliptic PDEs arising in switching games. Funkcialaj Ekvacioj 34, 143–155 (1991)

    MATH  MathSciNet  Google Scholar 

  25. Jakobsen, E.: Monotone schemes. In: Cont, R. (ed.) Encycl. Quan. Fin., pp. 1253–1263. Wiley, New York (2010)

    Google Scholar 

  26. Kennedy, J.S.: Hedging contingent claims in markets with jumps. PhD thesis, School of Computer Science, University of Waterloo (2007)

  27. Le, H., Wang, C.: A finite horizon optimal stopping problem with regime switching. SIAM J. Control Optim. 48(8), 5193–5213 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nochetto, R.H., van Petersdorff, T., Zhang, C.S.: A posteriori error analysis for a class of integral equations with variational inequalities. Numerische Mathematik 116, 519–552 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Salmi, S., Toivanen, J.: An iterative method for pricing American options under jump diffusion models. Appl. Numer.l Math. 61, 821–831 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wilmott, P.: Paul Wilmott on Quantitative Finance. Wiley, West Sussex (2000)

    Google Scholar 

  31. Yang, H.: A numerical analysis of American options with regime switching. J. Sci. Comput. 44(1), 69–91 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Forsyth.

Additional information

This work was supported by Tata Consulting Services and the Natural Sciences and Engineering Research Council of Canada.

Appendix: Error Bound for Local Policy Iteration with Inexact Inner Solution

Appendix: Error Bound for Local Policy Iteration with Inexact Inner Solution

In this Appendix, we generalize the result in Theorem 6.1 to include the effect of an approximate solution to Line 5 in Algorithm 6.1. We need only generalize the steps used in [21].

If \( V^{n+1}\) is a solution to Eq. (5.2) then

$$\begin{aligned} \displaystyle \max _{Q^{\prime } } \left\{ -\mathcal{A }(Q^{\prime } ) V^{n+1} + \mathcal{B }(Q^{\prime }) V^{n+1} + \mathcal{C }(Q^{\prime }, V^n) \right\} = 0 , \end{aligned}$$
(9.1)

while from Algorithm 6.1, we have

$$\begin{aligned} \displaystyle \max _{Q } \left\{ -\mathcal{A }(Q) (V^{n+1})^{k+1} + \mathcal{B }(Q) (V^{n+1})^k + \mathcal{C }(Q, V^n) \right\} = \mathcal{E }^{k}. \end{aligned}$$
(9.2)

The term \( \mathcal{E }^{k}\) in Eq. (9.2) takes into account that that we may not necessarily have the exact solution to Line 5 in Algorithm 6.1, if we use Algorithm 6.2.

Subtracting Eq. (9.1) from Eq. (9.2) we obtain

$$\begin{aligned} \mathcal{E }^{k}&= \displaystyle \max _{Q } \left\{ -\mathcal{A }(Q) (V^{n+1})^{k+1} + \mathcal{B }(Q) (V^{n+1})^k + \mathcal{C }(Q, V^n) \right\} \nonumber \\&\quad - \displaystyle \max _{Q^{\prime } } \left\{ -\mathcal{A }(Q^{\prime } ) V^{n+1} + \mathcal{B }(Q^{\prime }) V^{n+1} + \mathcal{C }(Q^{\prime }, V^n) \right\} \nonumber \\&\le \displaystyle \max _{Q } \left\{ -\mathcal{A }(Q) ((V^{n+1})^{k+1} - V^{n+1}) + \mathcal{B }(Q) ( (V^{n+1})^k - V^{n+1}) \right\} . \end{aligned}$$
(9.3)

If \({\hat{Q}}\) satisfies

$$\begin{aligned} {\hat{Q}} \in \mathop {\text{ arg } \text{ max }}_{Q } \left\{ \mathcal{A }(Q) ( (V^{n+1})^{k+1} - V^{n+1}) + \mathcal{B }(Q) ((V^{n+1})^k - V^{n+1}) \right\} . \end{aligned}$$
(9.4)

then, from Eq. (9.3), we have, \((E^{k+1} = (V^{n+1})^{k+1} - V^{n+1})\)

$$\begin{aligned} \mathcal{A }( {\hat{Q}}) E^{k+1} \le \mathcal{B }({\hat{Q}}) E^k - \mathcal{E }^{k}~, \end{aligned}$$
(9.5)

or, since \(\mathcal{A }(Q)\) is an \(M\) matrix,

$$\begin{aligned} E^{k+1}&\le \mathcal{A }({\hat{Q}})^{-1} \mathcal{B }({\hat{Q}}) E^k - \mathcal{A }({\hat{Q}})^{-1} \mathcal{E }^{k}~ \le C_1 \Vert E^k \Vert _{\infty } \mathbf{{e}} + C_2 \Vert \mathcal{E }^{k} \Vert _{\infty } \mathbf{{e}}\nonumber \\ C_1&= \max _{Q } \Vert \mathcal{A }({Q})^{-1} \mathcal{B }({Q}) \Vert _{\infty }\nonumber \\ C_2&= \max _{Q } \Vert \mathcal{A }({Q})^{-1} \Vert _{\infty } \end{aligned}$$
(9.6)

where \(\mathbf{{e}} = [1,1,\ldots ,1]^{\prime }\). Similarly

$$\begin{aligned} \mathcal{E }^{k}&= \displaystyle \max _{Q } \left\{ -\mathcal{A }(Q) (V^{n+1})^{k+1} + \mathcal{B }(Q) (V^{n+1})^k + \mathcal{C }(Q, V^n) \right\} \nonumber \\&- \displaystyle \max _{Q^{\prime } } \left\{ -\mathcal{A }(Q^{\prime } ) V^{n+1} + \mathcal{B }(Q^{\prime }) V^{n+1} + \mathcal{C }(Q^{\prime }, V^n) \right\} \nonumber \\&\ge \displaystyle \min _{Q } \left\{ -\mathcal{A }(Q) ( (V^{n+1})^{k+1} - V^{n+1}) + \mathcal{B }(Q) ((V^{n+1})^k - V^{n+1} ) \right\} . \end{aligned}$$
(9.7)

Hence if

$$\begin{aligned} {\bar{Q}} \in \mathop {\text{ arg } \text{ min }}_{Q \in Z} \left\{ -\mathcal{A }(Q) ( (V^{n+1})^{k+1} - V^{n+1}) + \mathcal{B }(Q) ( (V^{n+1})^k - V^{n+1}) \right\} , \end{aligned}$$
(9.8)

then

$$\begin{aligned} E^{k+1} \ge \mathcal{A }( {\bar{Q}})^{-1} \mathcal{B }({\bar{Q}}) E^k - \mathcal{A }({\hat{Q}})^{-1} \mathcal{E }^{k} \ge - C_1 \Vert E^k \Vert _{\infty } \mathbf{{e}} - C_2 \Vert \mathcal{E }^{k} \Vert _{\infty } \mathbf{{e}}~. \end{aligned}$$
(9.9)

Equations (9.6) and (9.9) then give

$$\begin{aligned} \Vert E^{k+1} \Vert _{\infty } \le C_1 \Vert E^k \Vert _{\infty } + C_2 \Vert \mathcal{E }_{ \max } \Vert _{\infty } \Vert \mathcal{E }_{ \max } \Vert _{\infty } = \max _{k} \Vert \mathcal{E }^{k} \Vert _{\infty }. \end{aligned}$$
(9.10)

From [21], we have that

$$\begin{aligned} C_1 \le \frac{\theta \hat{\lambda } \Delta \tau }{1 + \theta (r + \hat{\lambda })\Delta \tau }; \qquad \hat{\lambda } = \max _j \lambda _j \quad < 1, \end{aligned}$$
(9.11)

and \(C_2\) bounded, hence

$$\begin{aligned} \Vert E^{k+1} \Vert _{\infty } \le C_1^{k+1} \Vert E^0 \Vert _{\infty } + C_2 \left( \frac{ 1 - C_1^{k+1} }{ 1 - C_1} \right) \Vert \mathcal{E }_{ \max } \Vert _{\infty }, \end{aligned}$$
(9.12)

and in view of Eq. (9.11), we obtain

$$\begin{aligned} \lim _{k \rightarrow \infty } \Vert E^{k+1} \Vert _{\infty } \le \frac{C_2}{ 1 - C_1} \Vert \mathcal{E }_{ \max } \Vert _{\infty }. \end{aligned}$$
(9.13)

Manipulation of Line 4 in Algorithm 6.2 results in

$$\begin{aligned} \mathcal{A }(Q^m) (U^{m+1} - U^m) = \max _{Q} \biggl \{ - \mathcal{A }(Q) U^m + \mathcal{B }(Q) (V^{n+1})^k + \mathcal{C }(Q, V^n) \biggr \} \end{aligned}$$
(9.14)

Recall that at convergence of Algorithm 6.2, we have

$$\begin{aligned} (V^{n+1})^{k+1} = U^{m+1}. \end{aligned}$$
(9.15)

When Algorithm 6.2 terminates, we have

$$\begin{aligned} \mathcal{E }^k = \max _{ Q } \left\{ - \mathcal{A }(Q) (V^{n+1})^{k+1} + \mathcal{B }(Q) (V^{n+1})^k + \mathcal{C }(Q, V^n) \right\} , \end{aligned}$$
(9.16)

then, from Eqs. (9.14) and (9.16) (with \(U^{m+1} = (V^{n+1})^{k+1}\))

$$\begin{aligned} \mathcal{E }^k&= \mathcal{A }(Q^m) (U^{m+1} - U^m) + \max _{ Q } \left\{ - \mathcal{A }(Q) U^{m+1} + \mathcal{B }(Q) (V^{n+1})^k + \mathcal{C }(Q, V^n)\right\} \nonumber \\&- \max _{Q} \left\{ - \mathcal{A }(Q) U^m + \mathcal{B }(Q) (V^{n+1})^k + \mathcal{C }(Q, V^n) \right\} \end{aligned}$$
(9.17)

and then

$$\begin{aligned} | \mathcal{E }^k | \le | \mathcal{A }(Q^m) (U^{m+1} - U^m) | + \max _{ Q } | A(Q) (U^{m+1} - U^m) | ~, \end{aligned}$$
(9.18)

which implies

$$\begin{aligned} \Vert \mathcal{E }^k \Vert _{\infty } \le 2 \cdot \max _{Q} \Vert A(Q) \Vert _{\infty } \Vert U^{m+1} - U^m \Vert _{\infty }. \end{aligned}$$
(9.19)

Since \(\mathcal{A }(Q^m)\) is bounded, \( \Vert \mathcal{E }^{k} \Vert _{\infty }\) (and hence \(\Vert \mathcal{E }_{ \max } \Vert _{\infty }\)) can be made arbitrarily small by making \(tolerance_{inner}\) small in Algorithm 6.2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babbin, J., Forsyth, P.A. & Labahn, G. A Comparison of Iterated Optimal Stopping and Local Policy Iteration for American Options Under Regime Switching. J Sci Comput 58, 409–430 (2014). https://doi.org/10.1007/s10915-013-9739-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9739-3

Keywords

Mathematics Subject Classification

Navigation