Skip to main content
Log in

Optimal Point-Wise Error Estimate of a Compact Difference Scheme for the Coupled Gross–Pitaevskii Equations in One Dimension

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The coupled Gross–Pitaevskii (CGP) equation studied in this paper is an important mathematical model describing two-component Bose–Einstein condensate with an internal atomic Josephson junction. We here analyze a compact finite difference scheme which conserves the total mass and energy in the discrete level for the CGP equation. In general, due to the difficulty caused by compact difference on nonlinear terms, optimal point-wise error estimates without any restrictions on the grid ratios of compact difference schemes for nonlinear partial differential equations are very hard to be established. To overcome the difficulty caused by the compact difference operator, we introduce a new norm and an interesting transformation by which the difference scheme is transformed into a special equivalent vector form, we then use the energy method and some important lemmas on the equivalent system to obtain the optimal convergent rate, without any restrictions on the grid ratio, at the order of \(O(h^{4}+\tau ^2)\) in the maximum norm with time step \(\tau \) and mesh size \(h\). Finally, numerical results are reported to test the theoretical results and simulate the dynamics of the CGP equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bao, W.: Ground states and dynamics of multicomponent Bose–Einstein condensates. Multiscale Model. Simul. 2, 210–236 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bao, W., Cai, Y.: Ground states of two-component Bose–Einstein condensates with an internal atomic Josephson junction. East Asian J. Appl. Math. 1, 49–81 (2011)

    Google Scholar 

  3. Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear schrödinger equation with wave operator. SIAM J. Numer. Anal. 50, 492–521 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bao, W., Cai, Y.: Optimal error estimates of finite difference methods for the Gross–Pitaevskii equation with angular momentum rotation. Math. Comput. 82, 99–128 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Mod. 6, 1–135 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berikelashvili, G., Gupta, M.M., Mirianashvili, M.: Convergence of fourth order compact difference schemes for three-dimensional convection-diffusion equations. SIAM J. Numer. Anal. 45, 443–455 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Browder, F.E.: Existence and uniqueness theorems for solutions of nonlinear boundary value problems. In: Finn, R. (ed.) Application of Nonlinear Partial Differential Equations. Proceedings of Symposia in Applied Mathematics, vol. 17, pp. 24–49. AMS, Providence (1965)

  8. Fei, Z., Pérez-García, V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–77 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gao, Z., Xie, S.: Forth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations. Appl. Numer. Math. 61, 593–614 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gopaul, A., Bhuruth, M.: Analysis of a fourth-order scheme for a three-dimensional convection–diffusion model problem. SIAM J. Sci. Comput. 28, 2075–2094 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hall, D.S., Matthews, M.R., Ensher, J.R., Wieman, C.E., Cornell, E.A.: Dynamics of component separation in a binary mixture of Bose–Einstein condensates. Phys. Rev. Lett. 81, 1539–1542 (1998)

    Article  Google Scholar 

  12. Hall, D.S., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Measurements of relative phase in two-component Bose–Einstein condensates. Phys. Rev. Lett. 81, 1543–1546 (1998)

    Article  Google Scholar 

  13. Kasamatsu, K., Tsubota, M., Ueda, M.: Vortex phase diagram in rotating two-component Bose–Einstein condensates. Phys. Rev. Lett. 91. Article 150406 (2003)

    Google Scholar 

  14. Kasamatsu, K., Tsubota, M.: Nonlinear dynamics for vortex formation in a rotating Bose–Einstein condensate. Phys. Rev. A 67. Article 033610 (2003)

  15. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, J., Sun, Z., Zhao, X.: A three level linearized compact difference scheme for the Cahn–Hilliard equation. Sci. China Ser. A 55, 805–826 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liao, H., Sun, Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Differ. Equ. 26, 37–60 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liao, H., Sun, Z.: Error estimate of fourth-order compact scheme for linear Schrödinger equations. SIAM J. Numer. Anal. 47, 4381–4401 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liao, H., Sun, Z., Shi, H., Wang, T.: Convergence of compact ADI method for solving linear Schrödinger equations. Numer. Methods Partial Differ. Equ. 28, 1598–1619 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pitaevskii, L.P., Stringary, S.: Bose–Einstein Condensation. Clarendon Press, Oxford (2003)

    MATH  Google Scholar 

  21. Samarskii, A.A., Andreev, V.B.: Difference Methods for Elliptic Equation. Nauka, Moscow (1976)

    Google Scholar 

  22. Wang, T.: Convergence of an eighth-order compact difference scheme for the nonlinear Schrödinger equation. Adv. Numer. Anal. Article ID 913429, 24 p, (2012). doi:10.1155/2012/913429

  23. Wang, T., Guo, B.: Unconditional convergence of two conservative compact difference schemes for non-linear Schrödinger equation in one dimension. Sci. Sin. Math. 41, 1–27 (2011). (in Chinese)

    Article  Google Scholar 

  24. Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)

    Article  Google Scholar 

  25. Williams, J., Walser, R., Cooper, J., Cornell, E., Holland, M.: Nonlinear Josephson-type oscillations of a driven two-component Bose–Einstein condensate. Phys. Rev. A 59. Article R31–R34 (1999)

  26. Xie, S., Li, G., Yi, S.: Compact finite difference schemes with high accuracy for one-dimensional onlinear Schröinger equation. Comput. Methods Appl. Mech. Energ. 198, 1052–1060 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhang, Y., Bao, W., Li, H.: Dynamics of rotating two-component Bose–Einstein condensates and its efficient computation. Physica D 234, 49–69 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhang, Y., Sun, Z., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhou, Y.: Application of Discrete Functional Analysis to the Finite Difference Methods. International Academic Publishers, Beijing (1990)

    Google Scholar 

Download references

Acknowledgments

The author wish to express his gratitude to Prof. Weizhu Bao for his many valuable suggestions which improved this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingchun Wang.

Additional information

This work is supported by the National Natural Science Foundation of China, No. 11201239.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T. Optimal Point-Wise Error Estimate of a Compact Difference Scheme for the Coupled Gross–Pitaevskii Equations in One Dimension. J Sci Comput 59, 158–186 (2014). https://doi.org/10.1007/s10915-013-9757-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9757-1

Keywords

Mathematics Subject Classification

Navigation