Skip to main content

Advertisement

Log in

A Discontinuous Galerkin Coupled Wave Propagation/Circulation Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

On large geographic scales, ocean waves are represented in a spectral sense via the action balance equation, which propagates action density through both geographic and spectral space. In this paper, a new computational spectral wave model is developed by using discontinuous Galerkin (DG) methods in both geographic and spectral space. DG methods allow for the use of unstructured geographic meshes and higher-order approximations for action propagation in both geographic and spectral space, which we show leads to increased accuracy. This DG spectral wave propagation model is verified and validated through comparisons to manufactured and analytic solutions as well as to the Simulating WAves Nearshore (SWAN) model. Coupled wave/circulation models are needed for many applications including for the interaction between waves and currents during daily wind and tide driven flows. We loosely couple the new DG spectral wave model to the DG Shallow Water Equation Model (DG-SWEM), an existing DG circulation model. In addition to formulating the DG method for the coupled wave/circulation model, we derive an a priori error estimate. Preliminary numerical results of the DG coupled wave/circulation model are presented with comparisons to DG-SWEM coupled tightly to SWAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Booij, N., Ris, R.C., Holthuijsen, L.H.: A third-generation wave model for coastal regions: I. Model description and validation. J. Geophys. Res. 104(C4), 7649–7666 (1999)

    Article  Google Scholar 

  2. Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Texts in Applied Mathematics. Springer, Berlin (2007)

  3. Dawson, C.: Conservative, shock-capturing transport methods with nonconservative velocity approximations. Comput. Geosci. 3(3), 205–227 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dawson, C., Kubatko, E.J., Westerink, J.J., Trahan, C., Mirabito, C., Michoski, C., Panda, N.: Discontinuous Galerkin methods for modeling hurricane storm surge. Adv. Water Resour. 34(9), 1165–1176 (2011)

    Article  Google Scholar 

  5. Dawson, C., Proft, J.: Coupled discontinuous and continuous Galerkin finite element methods for the depth-integrated shallow water equations. Comput. Methods Appl. Mech. Eng. 193(3), 289–318 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193(23), 2565–2580 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dietrich, J.C., Tanaka, S., Westerink, J.J., Dawson, C.N., Luettich Jr, R.A., Zijlema, M., Holthuijsen, L.H., Smith, J.M., Westerink, L.G., Westerink, H.J.: Performance of the unstructured-mesh, SWAN+ADCIRC model in computing hurricane waves and surge. J. Sci. Comput. 52, 468–497 (2012)

    Article  MATH  Google Scholar 

  8. Dietrich, J.C., Trahan, C.J., Howard, M.T., Fleming, J.G., Weaver, R.J., Tanaka, S., Yu, L., Luettich Jr, R.A., Dawson, C.N., Westerink, J.J., Wells, G., Lu, A., Vega, K., Kubach, A., Dresback, K.M., Kolar, R.L., Kaiser, C., Twilley, R.R.: Surface trajectories of oil transport along the northern coastline of the Gulf of Mexico. Cont. Shelf Res. 41, 17–47 (2012)

    Article  Google Scholar 

  9. Dietrich, J.C., Zijlema, M., Allier, P.E., Holthuijsen, L.H., Booij, N., Meixner, J.D., Proft, J.K., Dawson, C.N., Bender, C.J., Naimaster, A., Smith, J.M., Westerink. J.J.: Limiters for spectral propagation velocities in SWAN. Ocean Model (2012)

  10. Dietrich, J.C., Zijlema, M., Westerink, J.J., Holthuijsen, L.H., Dawson, C., Luettich Jr, R.A., Jensen, R.E., Smith, J.M., Stelling, G., Stone, G.: Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast. Eng. 58(1), 45–65 (2011)

    Article  Google Scholar 

  11. Ewing, R., Wheeler, M.: Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 17(3), 351–365 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hedges, T.S.: Combinations of waves and currents: an introduction. In. Proc. Inst. Civ. Eng. 82, 567–585 (1987)

    Article  Google Scholar 

  13. Holthuijsen, L.H.: Waves in Oceanic and Coastal Waters. Cambridge University Press, Cambridge (2007)

  14. Hsu, T.W., Ou, S.H., Liau, J.M.: Hindcasting nearshore wind waves using a FEM code for SWAN. Coast. Eng. 52(2), 177–195 (2005)

    Article  Google Scholar 

  15. Jonsson, I.G.: Wave current interactions. Sea Ocean Eng. Sci. Ser. 9, 65–70 (1993)

    Google Scholar 

  16. Kubatko, E.J., Westerink, J.J., Dawson, C.: \(hp\) Discontinuous Galerkin methods for advection dominated problems in shallow water flow. Comput. Methods Appl. Mech. Eng. 196(1), 437–451 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kuik, A.J., van Vledder, G.P., Holthuijsen, L.H.: A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr. 18(7), 1020–1034 (1988)

    Google Scholar 

  18. Lasaint, P., Raviart, P.A.: Mathematical Aspects Finite Elments in Partial Differential Equations, Chapter. On a Finite Element Method for Solving the Neutron Transport Equation. Academic Press, New York (1974)

  19. Longuet-Higgins, M.S., Stewart, R.W.: Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Res. Ocean. Abst. 11(4), 529–562 (1964)

    Article  Google Scholar 

  20. Luettich, R.A., Jr., Westerink, J.J., Scheffner, N.W.: ADCIRC: An Advanced Three-dimensional Circulation Model for Shelves, Coasts, and Estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Technical Report DTIC Document (1992)

  21. Mei, C.C.: The Applied Dynamics of Ocean Surface Waves. Wiely, New York (1989)

    MATH  Google Scholar 

  22. Phillips, O.M.: The Dynamics of the Upper Ocean. Cambridge University Press, Cambridge (1977)

  23. Qi, J., Chen, C., Beardsley, R.C., Perrie, W., Cowles, G.W., Lai, Z.: An unstructured-grid finite-volume surface wave model (FVCOM-SWAVE): implementation, validations and applications. Ocean Model. 28(1–3), 153–166 (2009)

    Article  Google Scholar 

  24. Ris, R., Holthuijsen, L.H., Smith, J.M., Booij, N., van Dongeren, A.: The ONR test bed for coastal and oceanic wave models. In: Smith, J. (eds.) Proceedings 28th International Conference Coastal Engineering, pp. 380–392. ASCE, World Scientific Publishing (2003)

  25. Rogers, W.E., Kaihatu, J.M., Hsu, L., Jensen, R.E., Dykes, J.D., Holland, K.T.: Forecasting and hindcasting waves with the SWAN model in the Southern California Bight. Coast. Eng. 54(1), 1–15 (2007)

    Article  Google Scholar 

  26. Yildirim, B., Karniadakis, G.E.: A hybrid spectral/DG method for solving the phase-averaged ocean wave equation: algorithm and validation. J. Comput. Phys. 231(14), 4921–4953 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zijlema, M.: Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coast. Eng. 57(3), 267–277 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The first three authors were supported by National Science Foundation Grant DMS0915223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Meixner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meixner, J., Dietrich, J.C., Dawson, C. et al. A Discontinuous Galerkin Coupled Wave Propagation/Circulation Model. J Sci Comput 59, 334–370 (2014). https://doi.org/10.1007/s10915-013-9761-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9761-5

Keywords

Navigation