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Abstract: The stochastic collocation method [43, 1, 31, 30] has recently been applied to stochastic
problems that can be transformed into parametric systems. Meanwhile, the reduced basis method
[28, 40, 33], primarily developed for solving parametric systems, has been recently used to deal with
stochastic problems [7, 6]. In this work, we aim at comparing the performance of the two methods
when applied to the solution of linear stochastic elliptic problems. Two important comparison criteria
are considered: 1), convergence results of the approximation error; 2), computational costs for both
offline construction and online evaluation. Numerical experiments are performed for problems from
low dimensions O(1) to moderate dimensions O(10) and to high dimensions O(100). The main result
stemming from our comparison is that the reduced basis method converges better in theory and faster
in practice than the stochastic collocation method for smooth problems, and is more suitable for large
scale and high dimensional stochastic problems when considering computational costs.

Keywords: stochastic elliptic problem, reduced basis method, stochastic collocation method,
sparse grid, greedy algorithm, offline-online computational decomposition, convergence analysis

1 Introduction

In the modelling of the complex physical systems, uncertainties are inevitably encountered from various
sources, which can be generally categorized into epistemic and aleatory uncertainties. The former can
be reduced by more precise measurements or more advanced noise filtering techniques, while the latter
are very difficult if not impossible to be accurately captured due to possible multiscale properties and
intrinsic randomness of the physical systems. When the latter uncertainties are taken into account
in the mathematical models, we come to face stochastic problems. To solve them, various stochastic
computational methods have been developed, such as perturbation, Neumann expansion, Monte Carlo,
stochastic Galerkin, stochastic collocation, reduced basis method [17, 44, 31, 32, 7]. In particular, we
are interested in the comparison of stochastic collocation method and reduced basis method.

In the early years, stochastic collocation method was developed from the non-intrusive determin-
istic spectral collocation method [9, 10] to address applications in a variety of fields, for instance
chemical and environmental engineering [29], multibody dynamic system [24]. Nevertheless, only
in the recent years [43, 1] a complete analysis has been carried out, and new extensions outlined
[30, 31, 4, 26, 16, 21]. In principle, stochastic collocation method employs multivariate polynomial
interpolations for the approximation of stochastic solution at any given realization of the random
inputs based on collocated deterministic solutions [1]. Due to the heavy computation of a determin-
istic system at each collocation point in high dimensional space, isotropic or anisotropic sparse grids
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with suitable cubature rules [30, 31] were successfully analysed and applied for stochastic collocation
method to reduce the computational burden. This method is preferred for more practical applications
because it features the possibility of reusing available deterministic solvers owning to its non-intrusive
structure as Monte Carlo method, and also because it achieves fast convergence rate as stochastic
Galerkin method, see numerical comparison of them in [3].

Reduced basis method, on the other hand, is a model reduction technique originally developed to
solve parametric problems arising from the field of structure mechanics, fluid dynamics, etc. [28, 40,
33, 19, 18, 35, 36]. For its application to stochastic problems, we first parametrize the random variables
into parameter space, next we select the most representative points in this parameter space by greedy
sampling based on a posteriori error estimation [7, 6]. A landmark feature of reduced basis method is
the separation of the whole procedure into an offline computational stage and an online computational
stage [33, 36]. During the former, the more computationally demanding ingredients are computed and
stored once and for all, including sampling parameters, assembling matrices and vectors, after solving
and collecting snapshots of solutions. During the online stage, only the parameter related elements
are left to be computed and a small Galerkin approximation problem has to be solved. Reduced basis
method is similar to stochastic collocation method but with a posteriori error estimation for sampling,
and thus potentially be more efficient provided that a posteriori error bound is cheap to obtain [6].
How to compute rigorous, sharp and inexpensive a posteriori error bound is an open challenging task
for the application of reduced basis method in more general stochastic problems.

When it comes to solve practically a realistic stochastic problem, we need to choose between
different stochastic computational methods. It is crucial to know the properties of each method
and especially the way they compare in terms of complexity for formulation and implementation,
convergence properties and computational costs to solve a specific problem. In this paper, our target
is the comparison of the stochastic collocation method and the reduced basis method based on a
rather simple benchmark, a stochastic elliptic problem, in order to shed light on the advantages and
disadvantages of each method. We hope to provide some insightful indications on how to choose
the proper method for different problems. Generally speaking, for small scale and low dimensional
problems, stochastic collocation method is preferred while reduced basis method performs better for
large scale and high dimensional problems, as supported by our computational comparison. Moreover,
our numerical experiments demonstrate that an efficient combination of reduced basis method and
stochastic collocation method features a fast evaluation of statistics of the stochastic solution.

In section 2, a stochastic elliptic problem is set up with affine assumptions on the random coefficient
field. Weak formulation and regularity property of this problem is provided. The general formulation
for the stochastic collocation method and the reduced basis method are introduced in section 4 and 3,
respectively. A theoretical comparison of convergence results in both univariate case and multivariate
case as well as a direct comparison of the approximation error are carried out in section 5 and a
detailed comparison of the computational costs for the two methods is provided by evaluating the
cost of each step of the algorithms in section 6. In section 7, we perform a family of numerical
experiments aimed at the assessment of the convergence rates and computational costs of the two
methods. Finally, concluding remarks about the limitation of our work as well as some extension to
more general stochastic problems are given in section 8.

2 Problem setting

Let (Ω,F , P ) be a complete probability space, where Ω is a set of outcomes ω ∈ Ω, F is σ-algebra of
events and P : F → [0, 1] with P (Ω) = 1 assigns probability to the events. Let D be a convex, open
and bounded physical domain in Rd (d = 2, 3) with Lipschitz continuous boundary ∂D. We consider
the following stochastic elliptic problem: find u : Ω× D̄ → R such that it holds almost surely

−∇ · (a(·, ω)∇u(·, ω)) = f in D

u(·, ω) = 0 on ∂D
(2.1)

where f is a deterministic forcing term defined in the physical domain D and the homogeneous
Dirichlet boundary condition is prescribed on the whole boundary ∂D for simplicity. For the random
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coefficient a(·, ω), we consider the following assumptions:

Assumption 1 The random coefficient a(·, ω) is assumed to be uniformly bounded from below and

from above, i.e. there exist constants 0 < amin < amax <∞ such that

P (ω ∈ Ω : amin < a(x, ω) < amax ∀x ∈ D̄) = 1. (2.2)

Assumption 2 For the sake of simplicity, we assume that the random coefficient a(·, ω) depends only

on finite dimensional noise in the following linear form

a(x, y) = a0(x) +

K∑
n=1

ak(x)yk(ω), (2.3)

where the leading term is assumed to be dominating and uniformly bounded away from 0, i.e.

∃δ > 0, amin the same as in (2.2) s.t. a0(x) ≥ δ, ∀x ∈ D and ||ak||L∞(D) < 2amin, 1 ≤ k ≤ K, (2.4)

and {yk}Kk=1 are real valued random variables with joint probability density function ρ(y), being y =

(y1, . . . , yK). By denoting Γk = yk(Ω), k = 1, . . . ,K and Γ = ΠK
k=1Γk, we can also view y as a

parameter in the parametric space Γ that is endowed with the measure ρ(y)dy.

Remark 2.1 The expression (2.3) is widely used in practice and may come from, e.g., piecewise

thermal conductivity of a heat conduction field, where the functions ak, k = 1, . . . ,K are characteristic

functions. Or it may arise from the truncation of Karhunen-Loève expansion [41] of the correlation

kernel of porosity field when modeling fluid flow in porous media, where in this case for k = 1, . . . ,K,

ak =
√
λkφk with λk and φk denoting the kth eigenvalue and eigenfunction of the expansion, etc.

Under the above assumptions, the weak formulation of the stochastic elliptic problem reads: find
u(y) ∈ H1

0 (D) such that the following equation holds for ∀y ∈ Γ

A(u, v; y) = F (v) ∀v ∈ H1
0 (D), (2.5)

where H1
0 (D) := {v ∈ L2(D),∇v ∈ L2(D), v|∂D = 0} is a Hilbert space equipped with norm

||v||H1
0 (D) = ||v||L2(D)+||∇v||L2(D), F (·) is a linear functional defined as F (v) := (f, v) with f ∈ L2(D)

and A(·, ·; y) is a bilinear form affinely expanded following (2.3)

A(u, v; y) = A0(u, v) +

K∑
k=1

Ak(u, v)yk(ω), (2.6)

where the deterministic bilinear forms Ak(u, v) are given by Ak(u, v) := (ak∇u,∇v), k = 0, 1, . . . ,K.
From assumption (2.2) we have that the bilinear form is coercive and continuous and thus the existence
of a unique solution u(y) ∈ H1

0 (D) for ∀y ∈ Γ to problem (2.5) is guaranteed by Lax-Milgram
theorem [38]. In fact, we are interested in a related quantity s(u; y), e.g., the linear functional F (u),
as well as its statistics, e.g. the expectation E[s] , defined as

E[s] =

∫
Γ

s(u; y)ρ(y)dy. (2.7)

Since any approach for the approximation of the solution in the stochastic/parameter space depends
on the regularity of the solution with respect to the random vector or parameter y ∈ Γ, we summarize
briefly the regularity results in Lemma 2.1 following [14] for infinite dimensional problems (K =∞).
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Lemma 2.1 The following estimate for the solution of the problem (2.5) holds

||∂νyu||L∞(Γ;X) ≤ B|ν|!bν , (2.8)

where ν = (ν1, . . . , νK) ∈ NK , |ν| = ν1 + · · ·+ νK , H1
0 (D) ⊂ X ⊂ H1(D), B = ||u||L∞(Γ;X) and

bν =

K∏
k=1

bνkk =

K∏
k=1

( ||ak||L∞(D)

amin

)νk
. (2.9)

Furthermore, Lemma 2.1 implies by Taylor expansion the following analytic regularity which represents
a generalization of the result in [4] from RK to CK .

Corollary 2.2 The solution u : Γ→ X is analytic and can be analytically extended to the set

Σ =

{
z ∈ CK :

K∑
k=1

|zk − yk|bk < 1, ∀ y ∈ Γ

}
, (2.10)

We may also write for τk ≤ 1/(Kbk), 1 ≤ k ≤ K

Στ =
{
z ∈ CK : dist(zk,Γk) ≤ τk, ∀1 ≤ k ≤ K

}
. (2.11)

Remark 2.2 Problem (2.1) is a stochastic linear elliptic coercive and affine problem with linear func-

tional outputs. Without loss of generality, it represents our reference benchmark problem aimed at the

comparison of approximation quality and computational costs between the reduced basis method [40]

and the stochastic collocation method [1]. We remark that the comparison depends essentially on the

regularity of the stochastic solution in the parameter space, the dimension of the parameter space as

well as the complexity of solving a deterministic system at one stochastic realization. Therefore, the

comparison results hold similarly beyond the linear elliptic problem to more general problems.

3 Stochastic collocation method

Given any realization y ∈ Γ, stochastic collocation method [1] essentially adopts the Lagrangian inter-
polation to approximate the solution u(y) based on a set of deterministic solutions at the collocation
points chosen according to the probability distribution function of the random variables. Therefore,
we have to solve one deterministic problem at each collocation point. In order to achieve accurate and
inexpensive collocation approximation of the stochastic solution as well as its statistics, it all remains
to select efficient collocation points. Let us introduce the univariate stochastic collocation at first.

3.1 Univariate interpolation

Given the collocation points in Γ, e.g., y0 < y1 < y2 < · · · < yN as well as the corresponding solutions
u(yn), 0 ≤ n ≤ N , we define the univariate Nth order Lagrangian interpolation operator as

UNu(y) =

N∑
n=0

u(yn)ln(y), (3.1)

where ln(y), 0 ≤ n ≤ N are the Lagrangian characteristic polynomials of order N given in the form

ln(y) =
∏
m 6=n

y − ym

yn − ym
0 ≤ n ≤ N. (3.2)
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One evaluation of UNu(y) at a new realization y ∈ Γ requires O(N2) operations by formula (3.1).
For efficient and stable polynomial interpolation, we use barycentric formula [37] and rewrite the
characteristic polynomials as

ln(y) =
1∏

m6=n(yn − ym)︸ ︷︷ ︸
w̄n

· 1

y − yn
N∏
m=0

(y − ym)︸ ︷︷ ︸
l(y)

= l(y)
w̄n

y − yn
0 ≤ n ≤ N, (3.3)

where w̄n, 0 ≤ n ≤ N are barycentric weights, so that the interpolation operator (3.1) becomes

UNu(y) =

N∑
n=0

w̄n

y − yn
u(yn)

/ N∑
n=0

w̄n

y − yn
, where l(y) =

N∑
n=0

w̄n

y − yn
, (3.4)

which instead needs only O(N) operations for one evaluation provided that the barycentric weights
are precomputed and stored. The statistics of the solution or output can be therefore evaluated, e.g.

E[u] ≈ E[UNu] =

N∑
n=0

(∫
Γ

(
w̄n

y − yn
/ N∑
n=0

w̄n

y − yn

)
ρ(y)dy

)
u(yn) =

N∑
n=0

wnu(yn), (3.5)

where wn, 0 ≤ n ≤ N are quadrature weights. In order to improve the accuracy of the numerical
integral in (3.5) and the numerical interpolation in (3.4), it is favourable to select the collocation
points as the quadrature abscissas. Available quadrature rules include Clenshaw-Curtis quadrature,
Gaussian quadrature based on various orthogonal polynomials and so on [37].

3.2 Multivariate tensor product interpolation

Rewrite the univariate interpolation formula (3.1) with the index k for the kth dimension as

UNku(yk) =
∑

y
nk
k ∈Θk

u(ynkk )lnkk (yk), where Θk = {ynkk ∈ Γk, nk = 0, . . . , Nk} for some Nk ≥ 1 (3.6)

then the multivariate interpolation is given as the tensor product of the univariate interpolation

(UN1
⊗ · · · ⊗ UNK )u(y) =

∑
y
n1
1 ∈Θ1

· · ·
∑

y
nK
K ∈ΘK

u(yn1
1 , . . . , ynKK )

(
ln1
1 (y1)⊗ · · · ⊗ lnKK (yK)

)
. (3.7)

The corresponding barycentric formula for the multivariate interpolation is given as

(UN1
⊗ · · · ⊗ UNK )u(y) =

∑
y
n1
1 ∈Θ1

b1n1
(y1)∑

y
n1
1 ∈Θ1

b1n1
(y1)

· · ·
∑

y
nK
K ∈ΘK

bKnK (yK)∑
y
nK
K ∈ΘK

bKnK (yK)
u(yn1

1 , . . . , ynKK ), (3.8)

where bknk(yk) = w̄knk/(yk − y
nk
k ) with barycentric weights w̄knk , 1 ≤ k ≤ K precomputed and stored.

It is obvious that the multivariate barycentric formula reduces the tensor product interpolation from
O(N2

1 × · · · × N2
K) operations by (3.6) to O(N1 × · · · × NK) operations by (3.8). Corresponding to

the univariate interpolation, the expectation of the solution by multivariate interpolation is given as

E[u] ≈ E[(UN1 ⊗ · · · ⊗ UNK )u] =
∑

y
n1
1 ∈Θ1

· · ·
∑

y
nK
K ∈ΘK

u(yn1
1 , . . . , ynKK )

(
wn1

1 × · · · × w
nK
K

)
, (3.9)

where the quadrature weights wnkk , 1 ≤ k ≤ K can be pre-computed and stored by
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wnkk =

∫
Γk

bknk(yk)
/ ∑
y
nk
k ∈Θk

bknk(yk)

 ρ(yk)dyk. (3.10)

We remark that the number of the collocation points or quadrature abscissas grows exponentially fast
as (N1 + 1)× · · · × (NK + 1), or (N1 + 1)K if N1 = · · · = NK , which prohibits the application of the
multivariate tensor product interpolation for high dimensional stochastic problems (when K is large).

3.3 Sparse grid interpolation

In order to alleviate the “curse of dimensionality” in the interpolation on the full tensor product grid,
various sparse grid techniques [8] have been developed, among which the Smolyak type [31] is one
of the most popular constructions. For isotropic interpolation with the same degree q ≥ K for one
dimensional polynomial space in each direction, we have the Smolyak interpolation operator

Squ(y) =
∑

q−K+1≤|i|≤q

(−1)q−|i|
(
K − 1
q − |i|

)(
U i1 ⊗ · · · ⊗ U iK

)
u(y), (3.11)

where |i| = i1 + · · ·+ iK with the multivariate index i = (i1, . . . , iK) defined via the index set

X(q,K) :=

{
i ∈ NK

+ ,∀ ik ≥ 1 :

K∑
k=1

ik ≤ q

}
, (3.12)

and the set of collocation nodes for the sparse grid (see the middle of Figure 3.1) is thus collected as

H(q,K) =
⋃

q−K+1≤|i|≤q

(
Θi1 × · · · ×ΘiK

)
, (3.13)

where #Θik = 1 if ik = 1, and #Θik = 2ik−1 + 1 when ik > 1 in a nested structure. Note that we
denote U ik ≡ UNk defined in (3.6) for Nk = 2ik−1. Define the differential operator ∆ik = U ik −
U ik−1, k = 1, . . . ,K with U0 = 0, we have an equivalent expression of Smolyak interpolation [1]

Squ(y) =
∑

i∈X(q,K)

(
∆i1 ⊗ · · · ⊗∆iK

)
u(y)

= Sq−1u(y) +
∑
|i|=q

(
∆i1 ⊗ · · · ⊗∆iK

)
u(y).

(3.14)

The above formula allows us to discretize the stochastic space in hierarchical structure based on nested
collocation nodes, such as the extrema of Chebyshev polynomials or Gauss-Patterson nodes, leading
to Clenshaw-Curtis cubature rule or Gauss-Patterson cubature rule, respectively [31, 23].

Smolyak sparse grid [43] is originally developed as isotropic in every one-dimensional polynomial
space. The convergence rate of the solution in each polynomial space may vary due to different impor-
tance of each random variable, which helps to reduce further the computational effort by anisotropic
sparse grid [30], written as

Sαq u(y) =
∑

i∈Xα(q,K)

(
∆i1 ⊗ · · · ⊗∆iK

)
u(y), (3.15)

with the weighted index

Xα(q,K) :=

{
i ∈ NK

+ , i ≥ 1 :

K∑
k=1

ikαk ≤ min(α)q

}
, (3.16)
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Figure 3.1: Two dimensional collocation nodes by Clenshaw-Curtis cubature rule in tensor product
grid q = 8 (Left), sparse grid q = 8 (Middle), anisotropic sparse grid q = 8 and α = (1, 1.5)(Right)

where α = (α1, . . . , αK) represents the weights in different directions, estimated either from a priori
or a posteriori error estimates, see [30]. Figure 3.1 displays the full tensor product grid, the sparse
grid and the anisotropic sparse grid based on Clenshaw-Curtis cubature rule. We can observe that
the isotropic and anisotropic sparse grids are far coarser than the full tensor product grid, leading to
considerable reduction of the stochastic computation without much loss of accuracy, as we shall see
in the convergence analysis and the numerical experiments in the following sections.

Remark 3.1 For certain specific problems, some other advanced techniques turn out to be more ef-

ficient than both the isotropic and the anisotropic Smolyak sparse grid techniques. For example, the

quasi-optimal sparse grid [4] is assembled in a greedy manner to deal with the “accuracy-work” trade-

off problem; the adaptive hierarchical sparse grid [26, 16] succeeded in constructing the sparse grid

adaptively in hierarchical levels with local refinement or domain decomposition in stochastic space,

which is more suitable for low regularity problems; the combination of analysis of variance (ANOVA)

and sparse grid techniques [20, 21] for dealing with the high dimensional problems, etc.

4 Reduced basis method

Different from the interpolation approach used by stochastic collocation method, reduced basis method
employs Galerkin projection in the reduced basis space spanned by a set of deterministic solutions
[33, 40, 34]. Given any space X of dimension N for the approximation of the solution of problem
(2.5) (for instance, finite element space), we build the N dimensional reduced basis space XN for
N = 1, . . . , Nmax hierarchically until satisfying tolerance requirement at Nmax � N as

XN = span{u(yn), 1 ≤ n ≤ N} (4.1)

based on suitably chosen samples SN = {y1, . . . , yN} from a training set Ξtrain ⊂ Γ. The solutions
{u(yn), n = 1, . . . , N} are called “snapshots” corresponding to the samples {yn, n = 1, . . . , N}. Note
that X1 ⊂ X2 ⊂ · · · ⊂ XNmax . Given any realization y ∈ Γ, we seek the solution uN (y) in the reduced
basis space XN by solving the following Galerkin projection problem

A(uN , v; y) = F (v) ∀v ∈ XN . (4.2)

With uN (y) we can evaluate the output sN (y) = s(uN (y)) as well as compute its statistics, e.g.
expectation E[sN ] , by using e.g. Monte-Carlo method or quadrature formula as used in stochastic
collocation method. Four specific ingredients of the reduced basis method play a key role in select-
ing the most representative samples, hierarchically building the reduced basis space, and efficiently
evaluating the outputs. They are training set, greedy algorithm, a posteriori error estimate and an
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Offline-Online computational decomposition, which are addressed respectively as follows.

4.1 Training set

Two criteria should be followed for the choice of the training set: one is that it should be cheap without
too many ineffectual samples in order to avoid too much computation with little gain; the other is that
it should be sufficient to capture the most representative snapshots so as to build an accurate reduced
basis space. In practice, the training set is usually chosen as randomly distributed or log-equidistant
distributed in the parameter space [40, 33]. As for stochastic problem with random variables obeying
probability distribution other than uniform distribution, we propose to choose the samples in the
training set according to the probability distribution. Furthermore, for the sake of comparison with
stochastic collocation method, we take the training set such that it contains all the collocation points
used by stochastic collocation method. Adaptive approaches for building the training set have been
well explored starting from a small number of samples to more samples in the space Γ, see [45].

4.2 Greedy algorithm

Given a training set Ξtrain ⊂ Γ and a first sample set S1 = {y1} as well as its associated reduced
basis space X1 = span{u(y1)}, we seek the sub-optimal solution to the L∞(Ξtrain;X) optimization
problem in a greedy way as [40]: for N = 2, . . . , Nmax, find yN = arg maxy∈Ξtrain4N−1(y), where
4N−1 is a sharp and inexpensive a posteriori error bound constructed in the current N−1 dimensional
reduced basis space (specified later). Subsequently, the sample set and the reduced basis space are
enriched by SN = SN−1 ∪ {yN} and XN = XN−1 ⊕ span{u(yN )}, respectively. For the sake of
efficient computation of Galerkin projection and Offline-Online decomposition, we can normalize the
snapshots by Gram-Schmidt process to get the orthonormal basis of XN = span{ζ1, . . . , ζN} such
that (ζm, ζn)X = δmn, 1 ≤ m,n ≤ N . We remark that another algorithm that might be used for the
sampling procedure is proper orthogonal decomposition, POD for short [40], which is rather expensive
in dealing with L2(Ξtrain;X) optimization and thus more suitable for low dimensional problems.

4.3 A posteriori error estimate

The efficiency and reliability of the reduced basis approximation by greedy algorithm relies critically
on the availability of an inexpensive and sharp a posteriori error bound 4N , which can be constructed
as follows: for every y ∈ Γ, let R(v; y) ∈ X ′ be the residual in the dual space of X, defined as

R(v; y) := F (v)−A(uN (y), v; y) ∀v ∈ X. (4.3)

By Riesz representation theorem [15], we have a unique function ê(y) ∈ X such that (ê(y), v)X =
R(v; y)∀v ∈ X and ||ê(y)||X = ||R(·; y)||X′ , where the X-norm is defined as ||v||X = A(v, v; ȳ)
at some reference value ȳ ∈ Γ (we choose ȳ as the center of Γ by convention). Define the error
e(y) := u(y)− uN (y), we have by (2.5), (4.2) and (4.3) the following equation

A(e(y), v; y) = R(v; y) ∀v ∈ X. (4.4)

By choosing v = e(y) in (4.4), recalling the coercivity constant α(y) with the definition of its lower
bound αLB(y) ≤ α(y) of the bilinear form A(·, ·; y), and using Cauchy-Schwarz inequality, we have

αLB(y)||e(y)||2X ≤ A(e(y), e(y); y) = R(e(y); y) ≤ ||R(·, y)||X′ ||e(y)||X = ||ê(y)||X ||e(y)||X , (4.5)

so that we can define the a posteriori error bound 4N for the solution u as 4N := ||ê(y)||X/αLB(y)
so that ||u(y)− uN (y)||X ≤ 4N by (4.5). Since

|s(y)− sN (y)| = |s(u(y))− s(uN (y))| ≤ ||s||X′ ||u(y)− uN (y)||X , (4.6)
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where ||s||X′ is a constant independent of y, the same error bound can also be used in the Greedy
algorithm when considering the output sN . The efficient computation of a sharp and accurate a
posteriori error bound thus relies on the computation of a lower bound of the coercivity constant
αLB(y) as well as the value ||ê(y)||X for any given y ∈ Γ. For the former, we apply the successive
constraint linear optimization method (SCM) [22] to compute a lower bound αLB(y) of α(y). For the
latter, we turn to an Offline-Online computational decomposition procedure.

4.4 Offline-Online computational decomposition

The evaluation of the expectation E[sN ] and the a posteriori error bound 4N requires to compute
the output sN and the solution uN many times. Similar situations can be encountered for other
applications in the context of many query (optimal design, control) and real time computational
problems. One of the key ingredients that make reduced basis method stand out in this ground is
the Offline-Online computational decomposition, which becomes possible due to the affine assumption
such as that made in (2.3). To start, we express the reduced basis solution in the form [40]

uN (y) =

N∑
m=1

uNm(y)ζm. (4.7)

Upon replacing it in (4.2) and choosing v = ζn, 1 ≤ n ≤ N , we obtain the problem of finding
uNm(y), 1 ≤ m ≤ N such that

N∑
m=1

(
A0(ζm, ζn) +

K∑
k=1

ykAk(ζm, ζn)

)
uNm(y) = F (ζn) 1 ≤ n ≤ N. (4.8)

From (4.8) we can see that the values Ak(ζm, ζn), k = 0, 1, . . . ,K, 1 ≤ m,n ≤ Nmax and F (ζn), 1 ≤
n ≤ Nmax are independent of y, we may thus pre-compute and store them in the Offline procedure.
In the Online procedure, we only need to assemble the stiffness matrix in (4.8) and solve the resulting
N × N stiffness system with much less computational effort compared to solve the original N × N
stiffness system. As for the computation of the error bound 4N (y), we need to compute ||ê(y)||X
corresponding to y chosen in the course of sampling procedure. We expand the residual (4.3) as

R(v; y) = F (v)−A(uN , v; y) = F (v)−
N∑
n=1

uNn

(
K∑
k=0

ykAk(ζn, v)

)
, where y0 = 1. (4.9)

Set (C, v)X = F (v) and (Lkn, v)X = −Ak(ζn, v)∀v ∈ XN , 1 ≤ n ≤ N, 0 ≤ k ≤ K, where C and Lkn are
the representatives in X whose existence is secured by the Riesz representation theorem. By recalling
(ê(y), v)X = R(v; y), we obtain

||ê(y)||2X = (C, C)X +

K∑
k=0

N∑
n=1

ykuNn(y)

(
2(C,Lkn)X +

K∑
k′=0

N∑
n′=1

yk′uNn′(y)(Lkn,Lk
′

n′)X

)
. (4.10)

Therefore, we can compute and store (C, C)X , (C,Lkn)X , (Lkn,Lk
′

n′)X , 1 ≤ n, n′ ≤ Nmax, 0 ≤ k, k′ ≤ K
in the Offline-procedure, and evaluate ||ê(y)||X in the Online-procedure by assembling (4.10).

Remark 4.1 Different from the presentation of stochastic collocation method regardless of the under-

lying system, reduced basis method is introduced based on the linear, coercive and affine elliptic problem.

In fact, the same ingredients presented above can be extended to more general problems [40, 36], e.g.

time-dependent, non-linear, non-coercive and non-affine problems , as long as a posteriori error bound

is cheap to obtain and the offline construction and online evaluation can be efficiently decomposed using

proper techniques [2, 27, 19, 18], see its wide application fields, e.g. [35, 13, 36, 25, 39].
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5 Comparison of convergence analysis

In this section, we provide a comparison of the theoretical convergence results between the the stochas-
tic collocation method and the reduced basis method. In the first part, a preliminary comparison is
carried out based on the available convergence results in the literature at our best knowledge. Then
we perform a direct comparison between the two methods based on their fundamental construction.

5.1 Preliminary comparison of convergence results

Let us first consider a priori error estimate for one dimensional Lagrangian interpolation for y ∈ Γ =
[−1, 1] without loss of generality. In fact, we can map any bounded interval Γ into [−1, 1] by shifting
and rescaling. The convergence result for univariate stochastic collocation approximation is given as:

Proposition 5.1 Thanks to the analytic regularity in Corollary 2.2, we have the exponential conver-

gence rate for one dimensional stochastic collocation approximation error in L∞(Γ;X) norm

||u− UNu||L∞(Γ;X) ≤ CNr−N = CNe
−(ln r)N , (5.1)

with r = a+ b =
√

1 + τ2 + τ ≥ (
√

5 + 1)/2 ≈ 1.6 owing to (2.11) and assumption (2.4). The constant

CN is bounded in a logarithmic rescaling CN ≤ C ln(N + 1), where C is a constant independent of N .

Remark 5.1 The same result has been obtained in L2(Γ;X) norm in [1] except that the constant CN

in (5.1) is independent of N . For the sake of comparison with the convergence rate of reduced basis

method, we consider (5.1) in the norm of L∞(Γ;X) with the constant CN depending on N .

Proof Firstly, we demonstrate that the operator UN : C0(Γ;X) → L∞(Γ;X) is continuous. In fact,
by the definition of UN in (3.1), we have the following estimate

||UNu||L∞(Γ;X) = sup
y∈Γ

∣∣∣∣∣
∣∣∣∣∣
N∑
n=0

u(yn)ln(y)

∣∣∣∣∣
∣∣∣∣∣
X

≤ sup
y∈Γ

(
N∑
n=0

|ln(y)|

)
max

n=0,1,...,N
||u(yn)||X ≤ Λ(N)||u||C0(Γ;X),

(5.2)

where Λ(N) is the optimal Lebesgue constant bounded by (see [35])

Λ(N) := sup
y∈Γ

(
N∑
n=0

|ln(y)|

)
≤ 3

4
+

2

π
ln(N + 1). (5.3)

Therefore, by the fact UNw = w,∀w ∈ PN (Γ)⊗X (where PN (Γ) is a polynomial space with polyno-
mials of order less than or equal to N), we have that for every function u ∈ C0(Γ;X),

||u− UNu||L∞(Γ;X) ≤ ||u− w||L∞(Γ;X) + ||UN (w − u)||L∞(Γ;X) ≤ (1 + Λ(N))||u− w||C0(Γ;X). (5.4)

Moreover, the following approximation error estimate holds for every function u ∈ C0(Γ;X) (see [1])

inf
w∈PN (Γ)⊗X

||u− w||C0(Γ;X) ≤
2

r − 1
r−N max

z∈Σ
||u(z)||X . (5.5)

A combination of (5.2), (5.3), (5.4) and (5.5) leads to the result stated in (5.1) with the constant CN
derived as CN ≤ C ln(N + 1) with C depending only on maxz∈Σ ||u(z)||X and r. �
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For the same one dimensional parametric problem, a priori error estimate has been well es-
tablished for the reduced basis approximation [28, 40]. Note that in the context of the reduced
basis approximation, the result is based on the assumption that the parameter y is positive with
0 < ymin ≤ y ≤ ymax <∞. For the sake of consistent comparison with stochastic collocation method,
we still take the same parameter range Γ = [−1, 1] and introduce a new parameter by µ = y+ (1 + δ)
with δ > 0 so that µ ∈ [δ, 2 + δ] with µmin = δ > 0 and µmax = 2 + δ. Correspondingly, the problem
coefficient becomes a(x, y) = a0(x) + a1(x)y = (a0(x) − (1 + δ)a1(x)) + a1(x)µ and will be denoted
as â0(x) + a1(x)µ for convenience. We state the convergence result for one dimensional reduced basis
approximation given in [33, 40] in the following proposition:

Proposition 5.2 Suppose that lnµr = ln(µmax/µmin) > 1/2e and N ≥ Ncrit ≡ 1 + [2e lnµr]+ ([s]+

is the maximum integer smaller than s), then

||u− uN ||L∞(Γ;X) ≤ Ce−(N−1)/(Ncrit−1), (5.6)

where uN is the reduced basis approximation of the solution in the reduced basis space spanned by N

“snapshots”, and C is independent of N . Note that the samples µ1, . . . , µN are taken as equidistant

within [ln(µmin), ln(µmax)] in the way that ln(µn)− ln(µn−1) = ln(µr)/(N − 1), 2 ≤ n ≤ N .

At our knowledge, the a priori error estimates in Proposition 5.1 for the stochastic collocation
approximation and in Proposition 5.2 for the reduced basis approximation are the best available
results in the literature. Both of them show exponential convergence rate for the approximation of
the analytic solution with respect to the parameter y ∈ Γ. In order to guarantee the positiveness of
â0(x) in Proposition 5.2, we require δ ≤ 1/2 by assumption (2.4). Therefore, the minimal value of
Ncrit is 1+[2e ln(ur)]+ = 9, so that the convergence rate in (5.6) becomes e−(N−1)/8 ≈ 1.13−(N−1) for
N dimensional reduced basis approximation, which is larger than r−(N−1) (r > 1.6) in the stochastic
collocation approximation (5.1) using N collocation nodes corresponding to UN−1. From this closer
look, it seems that the stochastic collocation approximation is better as to a priori error estimation
than the reduced basis approximation in the univariate case under the above specific assumptions.

In the multivariate case, the property of convergence rate inherits that of the univariate case thanks
to the full tensor product structure of the multivariate Lagrangian interpolation (3.6) in the stochastic
collocation approximation. A priori error estimate is obtained in the following proposition.

Proposition 5.3 Under the assumptions of (2.4) and the analytic regularity of the solution in Corol-

lary 2.2, with Γ = [−1, 1]K for simplicity, the following convergence result is a consequence of Propo-

sition 5.1 by recursively using triangular inequality

||u− UNu||L∞(Γ;X) ≤
K∑
k=1

CNke
− ln(rk)Nk , (5.7)

where rk = a + b =
√

1 + τ2
k + τk > 1, 1 ≤ k ≤ K from (2.11) and N = (N1, . . . , NK) is the

interpolation order corresponding to the interpolation operator (UN1 ⊗ · · · ⊗ UNK ).

Remark 5.2 If CNk = CN1 , rk = r > 1, 1 ≤ k ≤ K and Nk = N1, 2 ≤ k ≤ K. Then the total number

of collocation nodes is N = KN1 and the error estimate in Proposition 5.3 becomes

||u− UNu||L∞(Γ;X) ≤ CN1
KN−

ln(r)
ln(K) , (5.8)

which decays very slowly when K is large and the region of analyticity r is small. For instance, when

K = 10 and r = 1.6 as in Proposition 5.1, we need at least N = 1010 in order to have KN−
ln(r)
ln(K) ≤ 0.1.

The convergence analysis of the isotropic and anisotropic Smolyak sparse grids stochastic colloca-
tion methods have been studied in [31] and [30] in the norm L2(Γ;X). Using the same argument in
Proposition 5.1, the following results with different constants from [31] and [30] are straightforward.
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Proposition 5.4 Suppose that the function u can be analytically extended to a complex domain

Σ(Γ; τ). By using isotropic Smolyak sparse grid and Clenshaw-Curtis collocation nodes, we have

||u− Squ||L∞(Γ;X) ≤ Cq−K+1N
−r
q , (5.9)

where: Cq−K+1 is a constant depending on q − K + 1 and r s.t. Cq−K+1 ≤ C(r) ln(2q−K+1 + 2);

Nq = #H(q,K) is the number of collocation nodes; r is defined as r = min(ln(
√
r1), . . . , ln(

√
rK))/(1+

ln(2K)) with r1, . . . , rK defined in (5.7). Using the anisotropic Smolyak sparse grid with Clenshw-

Curtis collocation nodes, we have

||u− Sαq u||L∞(Γ;X) ≤ Cq−K+1N
−r(α)
q , (5.10)

where r(α) = min(α)(ln(2)e− 1/2)/
(

ln(2) +
∑K
k=1 min(α)/αk

)
and αk = ln(

√
rk), k = 1, . . . ,K.

As for the reduced basis approximation in multivariate problems, there is unfortunately no a priori
error estimate in the literature to our knowledge. However, there is indeed a comparison between the
Kolmogorov width,

dN (Γ) := inf
dim(SN )=N

sup
y∈Γ

inf
wN∈XN

||u(y)− wN ||X , (5.11)

which defines the error of the optimal approximation, and the convergence rate of N dimensional
reduced basis approximation by the greedy algorithm [5]. In (5.11), the notations are the same as
in section 4: SN is a subset of samples with cardinality N ; XN = span{u(y), y ∈ SN} is a function
space spanned by the “snapshots”. Essentially, the Kolmogorov width measures the error of the best
or optimal N dimensional approximation over all possible N dimensional approximation. Define the
error of N dimensional approximation in the subspace Xg

N constructed from a greedy algorithm as:

σN (Γ) = sup
y∈Γ

inf
wN∈XgN

||u(y)− wN ||X . (5.12)

In practice we use a posteriori error estimator 4N as introduced in section 4 instead of the true error
infwN∈XgN ||u(y)− wN ||X for the greedy selection of quasi-optimal sample, which satisfies

c4N ≤ inf
wN∈XgN

||u(y)− wN ||X ≤ C4N , where 0 < γ ≡ c

C
≤ 1. (5.13)

A recent result [5] established a relation between the Kolmogorov width dN and the reduced basis
approximation error σN , which is summarized in the following proposition.

Proposition 5.5 Suppose that ∃M > 0 s.t. d0(Γ) ≤M . Moreover, assume that ∃ r > 0

if dN (Γ) ≤MN−r then σN (Γ) ≤ CMN−r ∀N > 0, (5.14)

where the constant C depends only on r and γ. Moreover, assume that ∃ a > 0,

if dN (Γ) ≤Me−aN
r

then σN (Γ) ≤ CMe−cN
s

∀N ≥ 0, (5.15)

where the constants s = r/(r + 1) and c, C depends only on a, r and γ.

This proposition basically states that whenever the Kolmogorov width decays in either an algebraic
or exponential rate, the greedy algorithm will also generate a quasi-optimal approximation space with
the error decaying in a similar way. By the definition of Kolmogorov width, which measures the error
of the optimal approximation among all the possible approximations, we have that the stochastic
collocation approximation error can not be small than or decay faster than the Kolmogorov width.
In particular, we have that the Kolmogorov width is smaller than the isotropic and anisotropic sparse
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grid collocation approximation error, i.e.

dNq (Γ) ≤ min{||u− Squ||L∞(Γ;X), ||u− Sαq u||L∞(Γ;X)} (5.16)

and if dNq (Γ) ≤MN−r̃q then r̃ ≥ max{r, r(α)}, where r and r(α) are the algebraic convergence rate in

(5.9) and (5.10) respectively, so that we have the reduced basis approximation error σNq (Γ) ≤ CMN−r̃q
which decays faster than the stochastic collocation approximation error as to a priori error estimate.
Moreover, if the stochastic solution is analytic in the probability/parameter space, as the case for
the elliptic problem (2.1) with analytic solution in Corollary 2.2, the Kolmogorov width can achieve
exponential convergence rate in practice [5], so that the reduced basis approximation error also decays
exponentially and much faster than the stochastic collocation approximation error, as demonstrated
by the numerical experiments in section 7.

Both the Kolmogorov width dN (Γ) and the greedy error σN (Γ) are given on the whole region Γ.
However, in practice they are defined over the training set Ξtrain ⊂ Γ. When it is dense enough,
i.e. dN (Γ) and σN (Γ) are indistinguishable from dN (Ξtrain) and σN (Ξtrain), the comparison above
is valid. On the other hand, if the training set Ξtrain is rather sparse in Γ, which is usually the case
in high dimensional problem, the comparison might be invalid. In order to have more rigorous and
fair comparison of the reduced basis approximation and the stochastic collocation approximation, we
perform a direct comparison of their approximation errors in the next section.

5.2 Direct comparison of approximation errors

As mentioned above, it is crucial to select the appropriate training set Ξtrain for the reduced basis
approximation. For its effective comparison with the stochastic collocation approximation, we choose
the training set the same as the collocation points used by the latter approximation, which we denote
as Ξsc in general for both the full tensor product grid and the sparse grid. Let us denote also the
interpolation formula on Ξsc as Isc : C0(Γ;X)→ L∞(Γ;X). We have the following proposition for a
direct comparison:

Proposition 5.6 Provided that the training set Ξtrain for reduced basis approximation is taken as the

collocation set Ξsc for stochastic collocation approximation, we have

||u− uN ||L∞(Γ;X) ≤ C||u− Iscu||L∞(Γ;X), (5.17)

where C is a constant independent of N .

Proof By definition of the reduced basis approximation uN in (4.7), we have

||u− uN ||L∞(Γ;X) = sup
y∈Γ
||u(y)− uN (y)||X

≤ C

3
sup
y∈Γ

inf
w∈XN

||u(y)− w||X

≤ C

3
sup

y∈Ξsc/SN

inf
w∈XN

||u(y)− w||X +
C

3
sup

y∈Γ/Ξsc

inf
w∈XN

||u(y)− w||X ,

(5.18)

where C is a constant independent of N ; the first inequality is due to the property of Galerkin
projection on the space XN , the second one comes from that Γ = SN ∪ (Ξsc/SN ) ∪ (Γ/Ξsc) and for
any y ∈ SN the reduced basis approximation error vanishes so that only two terms are left. For the
second term of (5.18), we have

sup
y∈Γ/Ξsc

inf
w∈XN

||u(y)− w||X ≤ sup
y∈Γ/Ξsc

inf
v∈Xsc

||u(y)− v||X + inf
w∈XN

||v − w||X , (5.19)
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where the function v is defined in the space Xsc, which is spanned by the solutions at the collocations
points in Ξsc. Therefore, we have that the first term of (5.19) satisfies

sup
y∈Γ/Ξsc

inf
v∈Xsc

||u(y)− v||X ≤ sup
y∈Γ/Ξsc

||u(y)− Iscu(y)||X = sup
y∈Γ
||u(y)− Iscu(y)||X (5.20)

and the second term of (5.19) can be bounded by (noting that v is one solution at some y ∈ Ξsc)

inf
w∈XN

||v − w||X ≤ sup
y∈Ξsc

inf
w∈XN

||u(y)− w||X = sup
y∈Ξsc/SN

inf
w∈XN

||u(y)− w||X . (5.21)

A combination of (5.18), (5.19), (5.20) and (5.21) leads to the following error bound

||u− uN ||L∞(Γ;X) ≤
2C

3
sup

y∈Ξsc/SN

inf
w∈XN

||u(y)− w||X +
C

3
sup
y∈Γ
||u(y)− Iscu(y)||X . (5.22)

Moreover, we can construct the reduced basis space in such a way that the reduced basis approxima-
tion error in the collocation/training set Ξsc (the first term of (5.22)) is smaller than the stochastic
collocation approximation error over Γ (the second term of (5.22)), i.e.

sup
y∈Ξsc/SN

inf
w∈XN

||u(y)− w||X ≤ sup
y∈Γ
||u(y)− Iscu(y)||X , (5.23)

which is always possible and an extreme case is that all the collocation points are included in the
sample set, i.e. Ξsc = SN , so that the first term of (5.22) vanishes. Therefore, by substituting (5.23)
into (5.22) we obtain (5.17). �

Since the evaluation of statistics by Monte Carlo algorithm converges very slowly, we propose the
approach of evaluating the solution by reduced basis method at all the collocation nodes first and then
applying quadrature formula (2.7) to assess the statistics. To improve the accuracy of this approach,
we also build the training set Ξtrain as the collocation/quadrature nodes Ξsc = Ξtrain. In fact, we
have the error estimate between the expectation E[s] and the value E[srb] approximated by reduced
basis method (E[ssc] is the value approximated by stochastic collocation method)

|E[s]− E[srb]| ≤ |E[s]− E[ssc]|+ |E[ssc]− E[srb]|, (5.24)

where the first term is the quadrature error and the second term is bounded by (4.6) as

|E[ssc]− E[srb]| ≤
∑

yi∈Ξsc

wi|s(yi)− srb(yi)|

≤ max
y∈Ξsc

|s(y)− srb(y)|

≤ max
y∈Ξsc

||s||X′ ||u(y)− uN (y)||X ,

(5.25)

where wi > 0 are quadrature weights. As long as reduced basis approximation error is smaller than
the quadrature error, (5.24) is dominated by the first term - the quadrature error.

6 Comparison of computational costs

In this section, we aim at comparing in detail the computational costs with respect to operations count
and storage of the reduced basis method and the stochastic collocation method. Let us begin with the
computational costs (C(·) stands for operations count and S(·) for storage) for stochastic collocation
method, which is listed along side the Algorithm 1 presented in section 3. The major computational
costs for reduced basis method is listed along side the Algorithm 2 presented in section 4.

A few notations are: Nsc = #Θ = (N1 +1)×· · ·×(NK+1), Nt = #Ξtrain; Nrb = Nmax; Wα is the
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average work to evaluate the lower bound αLB over the training set; Ws is the work to solve once the
linear system arising from (2.5) with C(N 2) ≤Ws ≤ C(N 3) and Wm is the work to evaluate (L,L)X
in (4.10) once with C(N ) ≤ Wm ≤ C(N 2). The total computational costs (apart from that of the
common initialization) for the reduced basis method and stochastic collocation method is calculated
from Algorithm 1 and 2 and presented in Table 6.1.

computational costs SC RB

offline operations count C(Nsc(Ws + K)) C(NtWα + NrbWs + KN2
rbN + K2N2

rbWm + NtK
2N3

rb)

online operations count C(Nsc) C(N3
rb + KN2

rb + K2N2
rb)

total storage S(Nsc(N + K)) S(NrbN + K2N2
rb + KNt)

Table 6.1: Computational costs of stochastic collocation method (SC) and reduced basis method (RB)

More in detail, the offline cost for stochastic collocation method is dominated by solving the
problem (2.5) Nsc times with total work C(Nsc(Ws + K)). Its online cost scales as C(Nsc) by the
multivariate barycentric formula or quadrature formula. The total storage is dominated by that for all
the solutions S(Nsc(N )). As for reduced basis method, the offline cost is the sum of pre-computing the
lower bound C(NtWα), solving the system Nrb times with total work C(NrbWs+KN2

rbN ), computing
error bound with work C(K2N2

rbWm) and searching in the training set with work C(NtK
2N3

rb). The
online cost is the sum of assembling (4.8) with work C(KN2

rb) and solving it with work C(N3
rb) as well

as evaluating the error bound with work K2N2
rb, as for statistics by quadrature formula, we need work

C(Nsc(N
3
rb +KN2

rb)). The total storage for reduced basis method takes S(NrbN +K2N2
rb +KNt) for

storing the solution, stiffness matrix as well as the training set.

Algorithm 1 Stochastic collocation method

1: procedure OFFLINE construction
2: Initialization: mesh, parameters, finite element functions ϕi, 1 ≤ i ≤ N , etc;
3: Pre-compute and store stiffness matrix Ak = Ak(ϕ·, ϕ·), 0 ≤ k ≤ K and vector F (ϕ·);

4: Pre-compute and store the collocation nodes Θ = Θ1 × · · · ×ΘK ; . C(Nsc)/S(KNsc)
5: for k = 1, . . . ,K do
6: for nk = 0, . . . , Nk do
7: Pre-compute and store the barycentric weights w̄nkk (ynkk ), ynkk ∈ Θk; . C(Nk)/S(1)
8: Pre-compute and store quadrature weights wknk by formula (3.10); . C(Nk)/S(1)
9: end for

10: end for
11: for n = 1, . . . , Nsc do
12: Compute and store the solution u(yn), yn ∈ Θ; . C(Ws)/S(N )
13: end for
14: end procedure

15: procedure ONLINE evaluation
16: Given y ∈ Γ, compute the solution u(y) by interpolation (3.8), (3.11) or (3.15); . C(Nsc)
17: Evaluate the expectation E[u] by (3.9); . C(Nsc)
18: end procedure

From Table 6.1 we can observe that an explicit comparison of computational costs for reduced basis
method and stochastic collocation method depends crucially on the number of collocation points Nsc
and the size of the training set Nt, the dimension of the reduced basis Nrb and parameters K, as well as
on the work of computing the lower bound Wα. In general, provided that the problem is computational
consuming in the sense that N is very large and provided that Nsc ≈ Nt, we have Nrb � Nsc so that
the reduced basis method is much more efficient in the offline procedure under the condition that
Wα � Ws by the SCM optimization algorithm. As for the online evaluation of the solution at a
new y ∈ Γ, this advantage becomes even more evident especially in high dimensions since the online
operations count for reduced basis method is much smaller than that for the stochastic collocation
method, i.e. C(N3

rb + KN2
rb + K2N2

rb) � C(Nsc). However, as for the evaluation of the statistics,
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Algorithm 2 Reduced basis method

1: procedure OFFLINE construction
2: Initialization: mesh, parameters, finite element functions ϕi, 1 ≤ i ≤ N , etc;
3: Pre-compute and store stiffness matrix Ak = Ak(ϕ·, ϕ·), 0 ≤ k ≤ K and vector F (ϕ·);

4: Pre-compute and store Ξtrain and αLB(y), y ∈ Ξtrain by SCM; . C(NtWα)/S(Nt)
5: Initialize y1 ∈ Ξtrain, S1 = {y1}, X1 = {ζ1}, ζ1 = u(y1)/||u(y1)||X ; . C(Ws)/S(N )
6: Compute and store Ak(ζ1, ζ1) and F (ζ1), 0 ≤ k ≤ K; . C(KN )/S(1)
7: Compute and store (C, C)X , (C,Lk1)X , (Lk1 ,Lk

′

1 )X , 0 ≤ k, k′ ≤ K; . C(K2Wm)/S(K2)
8: for N = 2, . . . , N̄max do
9: Compute 4uN−1(y) = ||ê(y)||X/αLB(y) by (4.10); . C(K2N2Nt)/S(Nt)

10: Choose yN = arg maxy∈Ξtrain4uN−1(y); . C(Nt)/S(1)
11: if 4uN−1(yN ) ≤ tolerance then
12: Nmax = N − 1; Break;
13: end if
14: Set SN = SN−1 ∪ yN and compute u(yN ); . C(K +Ws)/S(N )
15: Orthogonalize XN = span{ζ1, . . . , ζN−1, u(yN )}; . C(N )/S(N )
16: Compute and store Ak(ζm, ζn) and F (ζN ) for (4.8); . C(KNN )/S(N2)
17: Compute and store (C,LkN )X , (Lkn,Lk

′

n′)X for (4.10); . C(K2NWm)/S(K2N)
18: end for
19: end procedure

20: procedure ONLINE evaluation
21: Given y ∈ Γ, assemble and solve (4.8) and compute 4N (y); . C(N3

rb +KN2
rb +K2N2

rb)
22: Evaluate statistics by quadrature formula with Nsc abscissas; . C(Nsc(N

3
rb +KN2

rb))
23: end procedure

e.g. expectation E[u], the online operations count C(Nsc(N
3
rb +KN2

rb)) is larger for the reduced basis
method than the online operations count (C(Nsc)) for the stochastic collocation method. Moreover,
if we choose the size of the training set larger than the number of collocation points Nt � Nsc, which
is usually the case in practice for low dimensional problems (K = 1, 2, 3), or else the work Wα for the
computation of the lower bound αLB is not significantly smaller than Ws, the stochastic collocation
method could perform as well as or even better than the reduced basis method when Nt � Nsc.

7 Numerical experiments

In this section, we find numerical substantiation to our previous analysis on the convergence rate
and on computational costs, by numerically comparing the reduced basis method and the stochastic
collocation method. More precisely, we consider a stochastic elliptic problem in a two dimensional
unit square x = (x1, x2) ∈ D = (0, 1)2. The deterministic forcing term f = 1 is fixed. The coefficient
a(x, ω) is a random field with finite second moment, whose expectation and correlation are given as

E[a](x) =
c

100
, for a suitable c > 0; Cov[a](x, x′) =

1

1002
exp

(
− (x1 − x′1)2

L2

)
, x, x′ ∈ D (7.1)

where L is the correlation length. The Karhunen-Loève expansion of the random field a is

a(x, ω) =
1

100

(
c+

(√
πL

2

)1/2

y1(ω) +

∞∑
n=1

√
λn (sin(nπx1)y2n(ω) + cos(nπx1)y2n+1(ω))

)
, (7.2)

where the uncorrelated random variables yn, n ≥ 1, have zero mean and unit variance, and the
eigenvalues λn, n ≥ 1, have the following expression
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√
λn =

(√
πL
)1/2

exp

(
− (nπL)2

8

)
, ∀n ≥ 1. (7.3)

The random field a(x, ω) will be chosen as in (7.4) and (7.7) below. All the numerical computation
is performed in MATLAB on an Intel Core i7-2620M Processor of 2.70 GHz.

7.1 Numerical experiments for a univariate problem

For the test of univariate stochastic problem, we take

a(x, ω) =
1

100

(
1 +

(√
πL

2

)1/2

sin(2πx1)y1(ω)

)
, (7.4)

where y1(ω) obeys uniform distribution with zero mean and unit variance y1(ω) ∼ U(−
√

3,
√

3). We
implement Algorithm 1 for the stochastic collocation approximation with Clenshaw-Curtis nodes (the
same as Chebyshev-Gauss-Lobatto nodes [9, 42]), defined for y1 ∈ Γ1 = [−

√
3,
√

3] as

yn1 = −
√

3 cos
(nπ
N

)
, n = 0, . . . , N. (7.5)

We also implement Algorithm 2 for the reduced basis approximation with equidistant training set
Ξtrain with cardinality Nt = 1000, which is rather dense in the interval [−

√
3,
√

3]. We take randomly
the testing set Ξtest with Ntest = 1000 samples and define the L∞(Γ) error between the true solution
u (finite element solution) and approximate solution uapprox as

||u− uapprox||L∞(Γ;X) ≈ max
y∈Ξtest

||u(y)− uapprox(y)||X . (7.6)

We also compute the statistical error |E[||u||X ]−E[||uapprox||X ]| with the expectation defined in (3.5).
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Figure 7.1: Comparison for convergence rate of the error ||u− uapprox||L∞(Γ;X) (left) and the expec-
tation |E[||u||X ]− E[||uapprox||X ]| (right) between the true and the approximate solutions in 1D

Figure 7.1 illustrates the convergence of the error against collocation nodes as well as the num-
ber of reduced bases for the stochastic collocation approximation and reduced basis approximation,
respectively. From the left of Figure 7.1, we observe that both approximations achieve exponential
convergence in accordance with Proposition 5.1 and Proposition 5.2. The reduced basis approxima-
tion (convergence rate ≈ exp(−1.8N)) turns out to be slightly better than the stochastic colloca-
tion approximation (convergence rate ≈ exp(−1.3N)). As for the computation of the expectation
E[||u − uapprox||X ], we apply Clenshaw-Curtis quadrature rule [42] for stochastic approximation and
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time t(s) — size h 1/8 1/16 1/32 1/64 1/128
tRB(1D,Nt = 103) 4(0.0003) 7(0.0003) 12(0.002) 14(0.005) 33(0.02)
tSC(1D,NSC = 28) 0.04(0.0002) 0.1(0.0002) 1(0.0002) 6(0.0002) 31(0.0002)

Table 7.1: Offline (Online in bracket) computational costs measured in CPU time by reduced basis
approximation (RB) and stochastic collocation approximation (SC) achieving the same accuracy 1D

Monte-Carlo algorithm for reduced basis approximation. The right of Figure 7.1 shows that the
quadrature rule with exponential convergence rate ≈ exp(−1.6N) is apparently superior to Monte-
Carlo algorithm with algebraic convergence rate ≈ N−1/2 in the univariate problem.

As for the computational costs, though the reduced basis approximation needs slightly less “snap-
shots” than the stochastic collocation approximation, it costs more for the computation of a posteriori
error estimator by greedy sampling over a large training set in the offline construction. In Table 7.1
for univariate (1D) problem, we observe that for small scale problems, i.e. the mesh size h is large, the
offline construction of reduced basis approximation is apparently more expensive than the stochastic
collocation approximation. When the problem grows to large scale, i.e. the mesh size h is small, the
computational time is dominated by the time required for the solution of the finite element problem,
then the reduced basis approximation is as efficient as the stochastic collocation approximation or
even better. Moreover, it takes C(NSC) = C(28) operations count for the online evaluation of the
solution u(y) for any given y ∈ Γ by stochastic collocation method while reduced basis method needs
more computation C(N3

RB) = C(8000) > C(NSC) = C(28). From Table 7.1 we can see that the online
computational costs of reduced basis approximation increases with the scale of the problem and takes
more time than that of the stochastic collocation approximation, which depends only on the number
of collocation points NSC . In the computation of statistics, the reduced basis - Monte-Carlo approx-
imation is much more expensive than the stochastic collocation approximation with corresponding
quadrature rule for the univariate problem. In order to alleviate the computational cost, we can
first evaluate the solution at the collocation nodes by reduced basis approximation and then use the
quadrature formula to compute the statistics. However, this is not so useful if the number of colloca-
tion nodes is comparable to the number of reduced bases, as in the univariate case. We will compare
the proposed approach with the stochastic collocation approach for multivariate case later. From the
univariate experiment, we conclude that the stochastic collocation approximation is more efficient
than the reduced basis approximation for small scale problem in terms of computational costs and
become less efficient as the problem becomes in large scale, expensive to solve.

Figure 7.2 depicts the procedure of reduced basis construction by greedy sampling algorithm and
hierarchical stochastic collocation construction based on Clenshaw-Curtis nodes. At the top of Figure
7.2, we use larger size of dots to show earlier samples selected in the greedy algorithm, which is very
similar to the hierarchical collocation construction shown at the bottom of Figure 7.2 in terms of
the position and selected order of the nodes. This effect can be observed more closely in the middle
figure, where the greedy samples is in full consistency with the Clenshaw-Curtis nodes. In fact, the
maximum distance of the corresponding points between greedy samples and Clenshaw-Curtis nodes
(CC) is 0.074, and the mean distance is 0.023. For comparison, we also test Chebyshev-Gauss nodes
(CG), Legendre-Gauss nodes (LG) and Legendre-Gauss-Lobatto nodes (LGL) (see[9]) and the result
is listed in Table 7.2, from which we can see that Clenshaw-Curtis nodes are the best choice, followed
by Legendre-Gauss-Lobatto nodes. Note that the average distances of the samples in the training set
are 2

√
3/1000 = 0.0035 and 2

√
3/10000 = 0.00035, which are much smaller than the quantities in

Table 7.2, so that we are confident with the intrinsic difference between the samples selected by the
greedy algorithm and the collocation nodes. This numerical coincidence has also been observed for
empirical interpolation method (EIM) [2, 27], which is efficiently used in affinely approximating the
nonlinear function for nonlinear problems in the framework of reduced basis approximation. The fact
sheds light on the similarity of projection and interpolation in the common framework of nonlinear
approximation, in the way that the greedy algorithm for reduced basis projection tends to select the
points on which the Lebesgue constant arising in the stochastic collocation/interpolation is minimized.
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Figure 7.2: Comparison of greedy sampling (top) and hierarchical Clenshaw-Curtis rule (bottom).
The size of the nodes stands for the order that they are selected in the hierarchical approximation.
Correspondence of samples for reduced basis (◦) and Clenshaw-Curtis nodes (·) is highlighted (middle).

Nt CC CG LG LGL
1000 0.074(0.023) 0.108(0.033) 0.131(0.047) 0.082(0.024)
10000 0.076(0.022) 0.110(0.034) 0.134(0.049) 0.085(0.024)

Table 7.2: Comparison of the maximum distance (average distance in ()) between greedy samples in
reduced basis approximation and different collocation nodes for stochastic collocation approximation

7.2 Numerical experiments for multivariate problems

For the test of multivariate problem, we truncate the random field a(x, ω) from Karhunen-Loève
expansion (7.2) with five uniformly distributed random variables y = (y1, · · · , y5), whose value belongs
to Γ = [−

√
3,
√

3]5, and correlation length L = 1/8 so that the two eigenvalues λ1 ≈ 0.2132, λ2 ≈
0.1899, written as

a(x, ω) =
1

100

(
4 +

(√
πL

2

)1/2

y1(ω) +

2∑
n=1

√
λn (sin(nπx1)y2n(ω) + cos(nπx1)y2n+1(ω))

)
. (7.7)

The tensor product of one dimensional Clenshaw-Curtis nodes (7.5) for N = 1, 2, 3, 4, 5, 6, 7 as well
as a single node [0, 0, 0, 0, 0] are used for the stochastic collocation approximation, while Smolyak sparse
grid with level q−5 = 1, 2, 3, 4, 5, 6, 7 are used for stochastic sparse grid collocation approximation. For
the reduced basis approximation, we select the same 75 samples as used in the tensor product stochastic
collocation nodes. The convergence results for L∞(Γ) error and the expectation are displayed in Figure
7.3. From the left of Figure 7.3, we observe obvious better convergence rate for the reduced basis
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Figure 7.3: Comparison for convergence rate of the error ||u− uapprox||L∞(Γ;X) (left) and the expec-
tation |E[||u||X ]− E[||uapprox||X ]| (right) between the true and the approximate solution in 5D

time t(s) — size h 1/8 1/16 1/32 1/64 1/128
tRB(5D,Nt = 103) 50(0.0008) 55(0.001) 57(0.002) 76(0.01) 159(0.05)
tRB(5D,Nt = 75) 839(0.0005) 843(0.001) 846(0.002) 864(0.009) 949(0.05)
tSC(5D,NSC = 75) 17(0.02) 58(0.02) 755(0.02) 3619(0.02) 17252(0.02)

Table 7.3: Offline (Online in bracket) computational costs measured in CPU time by reduced basis
approximation (RB) and stochastic collocation approximation (SC) achieving the same accuracy 5D

approximation (still achieving exponential convergence rate≈ exp(−0.2N)) than stochastic collocation
approximation (only gaining convergence rate ≈ exp(0.0002N) or rather algebraic convergence rate
≈ N−1.5). The sparse grid collocation achieves better approximation than the tensor production
collocation at the beginning, and loses this advantage to the latter due to slower convergence for our
specific experiment in five dimensions.

As for the convergence of the expectation E[||u||X ] as seen from the right of Figure 7.3, the
highest convergence rate (gaining exponential convergence rate) is still achieved by the reduced basis
- collocation approximation, essentially by constructing the reduced basis at first and then evaluating
the solution at the collocation/quadrature points by reduced basis approximation. Similar convergence
behaviour can be observed for the tensor product and sparse grid collocation approximation, which
are still better than the reduced basis - Monte-Carlo approximation, though this advantage becomes
less evident than the univariate case.

For the comparison of computational cost, besides the same 75 training samples as used in the
tensor product stochastic collocation nodes, we also use Nt = 1000� 75 randomly generated samples
as training set. From Table 7.3, we may see that the offline computational costs for stochastic col-
location approximation grows exponentially fast as the complexity of the problem, while for reduced
basis approximation, it increases slightly and is dominated linearly by the cardinality of the training
set Ξtrain from the contrast of 75 ≈ 1.7 × 104 to 103, which is almost the same ratio of the CPU
time 839/50 ≈ 17. In comparison, the reduced basis approximation becomes much more efficient
than the stochastic collocation approximation in offline construction for large scale problems while it
loses moderately to the latter for the online computational cost. In the computation of statistics, the
reduced basis - collocation approximation is much faster than the stochastic collocation approxima-
tion: 949(offline) + 0.05× 75(online) ≈ 1789� 17252 for large scale problems (h = 1/128) while this
becomes opposite for small scale problems (h = 1/8) since 839 + 0.0005× 75 ≈ 847� 17.

When numerically solving the five dimensional stochastic problems, we can see that both col-
location and reduced basis approximation achieve better convergence property than Monte-Carlo
algorithm. However, when the number of random variables or parameters becomes very large, the
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Figure 7.4: Empirical convergence (left) and fitted convergence rate (right) in dimension 1 ≤ k ≤ 9

tensor product stochastic collocation approximation would need too many collocation points so that
the quadrature formula losses its advantage over the Monte-Carlo algorithm. Meanwhile, the size of
the training set for reduced basis construction also grows exponentially with the dimensions of the
problem. Therefore, it is necessary to alleviate the computational cost. When the random variables
yk, 1 ≤ k ≤ K have different importance for the stochastic problem, it would be worthless to put the
same weight on the ones with little importance as on those with much larger influence. For instance,
the first few eigenvalues λ1 ≈ 0.4782, λ2 ≈ 0.0752, λ3 ≈ 0.0034, λ4 ≈ 0.000045 decay so fast for large
correlation (L = 1/2) length in the Karhunen-Loève expansion (7.2) that the random variables have
distinct weights in determining the value of the coefficient a(x, y1, . . . , yK).

The key idea behind anisotropic sparse grid is that we take advantage of the anisotropic weights,
placing more collocation points in the dimensions that suffer from a slower convergence in order to
balance and minimize the global error [30]. How to obtain a sharp estimate of the importance or the
weight of different dimensions is crucial to use the anisotropic spars grid. One way is to derive a priori
error estimate with the convergence rate, e.g. the convergence rate exp(− ln(rk)N), 1 ≤ k ≤ K in
(5.7), as accurate as possible. However, deriving an analytical estimation of the convergence rate for
general problems is rather difficult. In alternative, we may perform empirical estimation by fitting the
convergence rate from numerical evaluation for each dimension, see Figure 7.4, and use the estimated
convergence rates as α in (3.15) for anisotropic sparse grid construction [30]. For the test of efficiency
of anisotropic grid, we take the correlation length L = 1/2, c = 5 for the coefficient a(x, ω) in (7.2)
and truncate it with nine random variables y = (y1, . . . , y9) ∈ Γ = [−

√
3,
√

3]9. Instead of the norm
||u− uapprox||L∞(Γ,X), we use ||||u||X − ||uapprox||X ||L∞(Γ) to reduce the evaluation cost.

We use isotropic sparse grid and anisotropic sparse grid at the interpolation level q−9 = 1, 2, 3, 4, 5, 6
for stochastic collocation approximation in (3.11) and (3.15), and choose the training samples as the
collocation nodes in sparse grid at the deepest interpolation level q − 9 = 6 (100897 ≈ 105 nodes)
for reduced basis approximation. From Figure 7.5, we can see that the reduced basis approximation
converges much faster than the stochastic collocation approximation in both L∞(Γ) norm and the
statistical norm. The offline computational cost of reduced basis approximation for small scale prob-
lems h = 1/8, 1/16, 1/32 is larger than that of stochastic collocation approximation, while for large
scale problems h = 1/64, 1/128 this becomes quite opposite, see in Table 7.4. Besides, we also use 103

randomly generated training samples for reduced basis approximation, and we still obtain the high
accuracy in both L∞(Γ) norm and the statistical norm due to the fact that the solution is very smooth
in the parameter space. We can see from Table 7.4 that the computational costs with 103 samples is
far less than that of the sparse grid stochastic collocation approximation for both offline construction
and online evaluation. In fact, the online construction of the reduced basis approximation stays the
same as dominated by the number of reduced basis Nrb in the way O(N3

rb+KN2
rb+K2N2

rb), while the
online cost for stochastic collocation approximation grows with the number of collocation points in an
approximately linear way O(Nsc)(105/75 ≈ 0.13/0.02). Figure 7.5 also carries the fact that anisotropic

21



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

comparison in nine dimensions

N

||
||
u

||
X
−

||
u

a
p
p
ro

x|
| X

||
L

∞

(Γ
)

 

 

 anisotropic sparse grid

 isotropic sparse grid

 tensor product grid

 reduced basis

10
0

10
1

10
2

10
3

10
4

10
5

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

comparison of expectation

N

|E
[|
|u

||
X
] 

−
 E

[|
|u

a
p
p
ro

x|
| X

]|

 

 

 anisotropic sparse grid

 isotropic sparse grid

 tensor product grid

 reduced basis − Monte−Carlo

 reduced basis − collocation

Figure 7.5: Comparison for convergence rate of the error ||||u||X − ||uapprox||X ||L∞(Γ) (left) and the
expectation |E[||u||X ]−E[||uapprox||X ]| (right) between the true and the approximate solutions in 9D

time t(s) — size h 1/8 1/16 1/32 1/64 1/128
tRB(9D,Nt = 103) 85(0.0007) 91(0.001) 93(0.002) 121(0.01) 235(0.04)
tRB(9D,Nt ≈ 105) 8577(0.0008) 8582(0.001) 8585(0.002) 8610(0.01) 8722(0.04)
tSC(9D,NSC ≈ 105) 154(0.13) 305(0.13) 4804(0.13) 23401(0.13) 101795(0.13)

Table 7.4: Offline (Online in bracket) computational costs measured in CPU time by reduced basis
approximation (RB) and stochastic collocation approximation (SC) achieving the same accuracy 9D

sparse grid is more efficient than the isotropic sparse grid for anisotropic problems. Meanwhile, we
can see that the stochastic collocation approximation based on tensor product grid starts to converge
slower than N−1/2, which is the typical convergence rate of Monte-Carlo method.

7.3 Numerical experiments for higher dimensional problems

In this numerical experiment, we deal with high dimensional stochastic problems, pushing the dimen-
sions from 9D to 21D, 51D to up 101D and comparing the performance of the reduced basis approx-
imation and the stochastic collocation approximation. Note that in high dimensions K = 101, it is
prohibitive to use stochastic collocation with tensor product grid (since we would need 3101 ≈ 1.5×1048

collocation points in total with 3 collocation points in each dimension), we use instead sparse grid
of the anisotropic type to reduce the computational cost. The correlation length is L = 1/128,
which enables us to consider an anisotropic problem but with the eigenvalues decaying very slowly
(λ1 = 0.0138, λ50 = 0.0095). The constant in (7.2) is chosen as c = 20 to guarantee that the stochastic
problem is well posed with coercive elliptic operator. For the reduced basis approximation, we use
1000 samples randomly selected in Γ = [−

√
3,
√

3]K ,K = 9, 21, 51, 101 thanks to the rather smooth
property of the solution in the parameter space, and for the stochastic collocation approximation, we
construct adaptively an anisotropic sparse grid with 101, 102, 103, 104, 105, 106 collocation nodes in a hi-
erarchical way governed by the hierarchical surpluses [23]. To evaluate the ||||u||X−||uapprox||X ||L∞(Γ)

error, we randomly select 100 samples in Γ. For the computation of expectation as well as the error
|E[||u||X ]− E[||uapprox||X ]|, we apply the reduced basis - collocation approximation with 105 colloca-
tion nodes constructed from the anisotropic grid. The error |E[||u||X ] − E[||uapprox||X ]| is evaluated
as a posteriori error by taking the best stochastic collocation approximation as the true value.

The results for the high dimensional stochastic problems are displayed in Figure 7.6, from which
we can observe an exponential decay rate for both the L∞(Γ) error and the statistical error by
reduced basis approximation, which is much faster than the stochastic collocation approximation.
As the dimension increases from 9 to 101, the convergence rate decreases very fast for both reduced
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basis approximation and stochastic collocation approximation. As for the computational costs of
reduced basis method, it takes 86(K = 9), 424(K = 21), 2479(K = 51), 8986(K = 101) CPU seconds
respectively for the offline construction with the mesh size h = 1/8, growing as tRB ∝ O(K2),
which verify the formula in Table 6.1 by Algorithm 2. In contrary, it would take tSC ∝ O(Kw) where
w = q−K = 0, 1, 2, . . . is the interpolation level in the isotropic Smolyak formula (3.11), which prevents
large w for high dimensional problems. We remark that although our numerical results are very
promising for reduced basis approximation, the size of the samples in the training set #Ξtrain = 1000
and the testing set #Ξtest = 100 is rather small for the high dimensional problems, which may bring
insufficiency as for the approximation. In order to increase the accuracy of approximation, we may
construct the training set adaptively by replacing it with new set once the reduced basis approximation
is good enough in the current one, see [45]. We also remark that the work of offline construction is
linear with respect to the cardinality of the training set tRB ∝ Nt, as seen in Table 6.1.
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Figure 7.6: Comparison for convergence rate of ||||u||X−||uapprox||X ||L∞(Γ) (left) and the expectation
|E[||u||X ] − E[||uapprox||X ]| (right) between the anisotropic sparse grid stochastic collocation (SC)
approximation and the reduced basis (RB) approximation in high dimensions 9D, 21D, 51D and 101D

8 Concluding remarks

In this work, we carried out a detailed comparison between the reduced basis method and the stochastic
collocation method for linear stochastic elliptic problems, in terms of convergence analysis and com-
putational costs. The reduced basis method adopts Galerkin projection on the reduced basis space
constructed from a greedy algorithm governed by a posteriori error estimate. It takes advantage of
the affine structure of the stochastic problem to decompose the computation into offline procedure
and online procedure. The stochastic collocation method, on the other hand, follows essentially the
Lagrangian interpolation on the collocation nodes, which are taken as quadrature abscissa in order to
achieve high order interpolation as well as integration for statistical computation.

As for the convergence analysis, the reduced basis method achieves exponential convergence rate
for analytic/smooth problems regardless of dimensions in our test case. The stochastic collocation
method also obtains exponential convergence in low dimensional case, though with a slower rate than
that featured by the reduced basis method. In contrast, in the multivariate case, especially for high
dimensional problems, it only achieves algebraic convergence rate. The computation of the stochastic
collocation method costs less effort than the reduced basis method in small scale and low dimensional
problems, while it grows much faster than the reduced basis method in large scale and high dimensional
problems, resulting in much more computational effort than the latter one. Note that the comparison
depends essentially on the regularity of the stochastic solution, the dimension of the parameter space
as well as the complexity of solving the underlying deterministic system, so that we presume that
similar comparison results hold reasonably beyond the linear stochastic elliptic problems.
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We succeeded in applying the reduced basis method and the anisotropic sparse grid stochastic col-
location method in high dimensional problems up to the order of (100). Nevertheless, the application
is admittedly insufficient since the number of samples and collocation nodes is rather small. More
advanced techniques such as sensitivity analysis, adaptive construction and so on [20, 21] for both
methods are being developed actively from the research community, more specifically to deal with
high dimensional stochastic systems. More research focusing on both theoretical and computational
aspects is still needed when considering reduced basis method and stochastic collocation method as
well as their efficient combination for solving low regularity and high dimensional stochastic problems
with random variables featuring more general probability distributions [12, 11], etc.
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output bounds for the harmonic Maxwell’s equations. SIAM Journal on Scientific Computing,
32(2):970–996, 2010.

[14] A. Cohen, R. DeVore, and C. Schwab. Convergence rates of best N-term Galerkin approximations
for a class of elliptic SPDEs. Foundations of Computational Mathematics, 10(6):615–646, 2010.

[15] L.C. Evans. Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, American
Mathematical Society. 2009.

[16] J. Foo, X. Wan, and G.E. Karniadakis. The multi-element probabilistic collocation method (ME-
PCM): error analysis and applications. Journal of Computational Physics, 227(22):9572–9595,
2008.

[17] R.G. Ghanem and P.D. Spanos. Stochastic Finite Elements: a Spectral Approach. Dover Civil
and Mechanical Engineering, Courier Dover Publications, 2003.

[18] M.A. Grepl, Y. Maday, N.C. Nguyen, and A.T. Patera. Efficient reduced-basis treatment of
nonaffine and nonlinear partial differential equations. ESAIM: Mathematical Modelling and Nu-
merical Analysis, 41(03):575–605, 2007.

[19] M.A. Grepl and A.T. Patera. A posteriori error bounds for reduced-basis approximations of
parametrized parabolic partial differential equations. ESAIM: Mathematical Modelling and Nu-
merical Analysis, 39(01):157–181, 2005.

[20] M. Griebel. Sparse grids and related approximation schemes for higher dimensional problems,
2005.

[21] X. Hu, G. Lin, T.Y. Hou, and P. Yan. An adaptive ANOVA-based data-driven stochastic method
for elliptic pde with random coefficients. Technical Report, Applied and Computational Mathe-
matics, California Institute of Technology, 2012.

[22] D.B.P Huynh, G. Rozza, S. Sen, and A.T. Patera. A successive constraint linear optimization
method for lower bounds of parametric coercivity and inf-sup stability constants. Comptes Rendus
Mathematique, Analyse Numérique, 345(8):473–478, 2007.

[23] A. Klimke. Uncertainty modeling using fuzzy arithmetic and sparse grids. Universität Stuttgart.
PhD thesis, Universität Stuttgart, 2006.

[24] A. Klimke, K. Willner, and B. Wohlmuth. Uncertainty modeling using fuzzy arithmetic based on
sparse grids: applications to dynamic systems. International Journal of Uncertainty, Fuzziness
and Knowledge-based Systems. v12 i6, pages 745–759, 2004.

[25] T. Lassila, A. Quarteroni, and G. Rozza. A reduced basis model with parametric coupling for
fluid-structure interaction problems. SIAM Journal on Scientific Computing, 34(2):1187–1213,
2012.

[26] X. Ma and N. Zabaras. An adaptive hierarchical sparse grid collocation algorithm for the solution
of stochastic differential equations. Journal of Computational Physics, 228(8):3084–3113, 2009.

[27] Y. Maday, N.C. Nguyen, A.T. Patera, and G.S.H. Pau. A general, multipurpose interpolation
procedure: the magic points. Communications on Pure and Applied Analysis, 8(1):383–404, 2009.

[28] Y. Maday, A.T. Patera, and G. Turinici. Global a priori convergence theory for reduced-
basis approximations of single-parameter symmetric coercive elliptic partial differential equations.
Comptes Rendus Mathematique, 335(3):289–294, 2002.

25



[29] G.J. McRae, M.A. Tatang, et al. Direct incorporation of uncertainty in chemical and environ-
mental engineering systems. PhD thesis, Massachusetts Institute of Technology, 1995.

[30] F. Nobile, R. Tempone, and C.G. Webster. An anisotropic sparse grid stochastic collocation
method for partial differential equations with random input data. SIAM Journal on Numerical
Analysis, 46(5):2411–2442, 2008.

[31] F. Nobile, R. Tempone, and C.G. Webster. A sparse grid stochastic collocation method for
partial differential equations with random input data. SIAM Journal on Numerical Analysis,
46(5):2309–2345, 2008.

[32] A. Nouy. Recent developments in spectral stochastic methods for the numerical solution of
stochastic partial differential equations. Archives of Computational Methods in Engineering,
16(3):251–285, 2009.

[33] A.T. Patera and G. Rozza. Reduced basis approximation and a posteriori error estimation for
parametrized partial differential equations Version 1.0. Copyright MIT, http://augustine.mit.edu,
2007.

[34] A. Quarteroni. Numerical Models for Differential Problems. Springer, MS & A, vol 2, 2009.

[35] A. Quarteroni and G. Rozza. Numerical solution of parametrized Navier–Stokes equations by
reduced basis methods. Numerical Methods for Partial Differential Equations, 23(4):923–948,
2007.

[36] A. Quarteroni, G. Rozza, and A. Manzoni. Certified reduced basis approximation for parametrized
partial differential equations and applications. Journal of Mathematics in Industry, 1(1):1–49,
2011.

[37] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer, 2007.

[38] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations. Springer,
1994.

[39] G. Rozza. Shape design by optimal flow control and reduced basis techniques: Applications to
bypass configurations in haemodynamics. PhD thesis, EPFL, 2005.

[40] G. Rozza, D.B.P. Huynh, and A.T. Patera. Reduced basis approximation and a posteriori error
estimation for affinely parametrized elliptic coercive partial differential equations. Archives of
Computational Methods in Engineering, 15(3):229–275, 2008.
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