Skip to main content
Log in

Convergence Analysis of a Symmetric Dual-Wind Discontinuous Galerkin Method

Convergence Analysis of DWDG

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new symmetric discontinuous Galerkin method for second order elliptic problems is analyzed. We show that the numerical method is stable for any positive penalty parameter and converges with optimal order provided the exact solution is sufficiently regular. These results are also shown to hold for some non-positive penalty parameters. Numerical experiments are presented that support the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The IP methods can also be derived from this procedure [1].

References

  1. Arnold, D., Brezzi, F., Cockburn, B., Marini, D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001)

    Article  MathSciNet  Google Scholar 

  2. Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31, 45–59 (1977)

    Article  MATH  Google Scholar 

  3. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds.) Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, pp. 99–108. Technologisch Instituut, Antwerpen, Belgium (1997)

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  6. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convectiondiffusion problems. Math. Comput. 71, 455–478 (2002)

    Article  MATH  Google Scholar 

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  9. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cockburn, B., Dong, B.: An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems. J. Sci. Comput. 32(2), 233–262 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Douglas Jr., J., Dupont, T.: Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. Lecture Notes in Phys. 58. Springer, Berlin (1976)

  12. Feng, X., Lewis, T., Neilan, M.: Finite element differential calculus and applications to numerical solutions of linear and nonlinear partial differential equations. arXiv:1302.6984 [math.NA]

  13. Larson, M.G., Niklasson, A.J.: Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case. Numer. Math. 99, 113–130 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Larson, M.G., Niklasson, A.J.: Analysis of a non symmetric discontinuous Galerkin method for elliptic problems: stability and energy error estimates. SIAM J. Numer. Anal. 42(1), 252–264 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nitsche, J.A.: Über ein Variationspirinzip zur Lösung Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unteworfen sind. Abh. Math. Sem. Univ. Hamburg 36, 9–15 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  16. Oden, J.T., Babuška, I., Baumann, C.E.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146, 491–519 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and implementation. Frontiers in Applied Mathematics, vol. 35. SIAM, Philadelphia, PA (2008)

  18. Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I. Comput. Geosci. 3(3–4), 337–360 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Scott, L.R., Zhang, S.: Finite element interpolation of non smooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NSF through grants DMS-071083 (Lewis) and DMS-1238711 (Neilan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Neilan.

Appendix: An Auxiliary Result

Appendix: An Auxiliary Result

Lemma 8

Let \(T\) be a \(d\)-dimensional simplex, and let \(e\subset \partial T\) be an arbitrary \((d-1)\)-dimensional sub-simplex of \(T\). Then any \(v_h\in \mathbb P _r(T)\) is uniquely determined by the following values

$$\begin{aligned}&\int \limits _T v_h w_h\, dx\qquad \forall w_h\in \mathbb P _{r-1}(T),\end{aligned}$$
(49a)
$$\begin{aligned}&\int \limits _e v_h q_h\, ds\qquad \forall q_h\in \mathbb P _r(e). \end{aligned}$$
(49b)

Proof

Since \(\dim \mathbb P _{r-1}(T) +\dim \mathbb P _r(e) = \left( \begin{array}{c}{d+r-1}\\ {d}\end{array}\right) +\left( \begin{array}{c}{d+r-1}\\ {d-1}\end{array}\right) = \left( \begin{array}{c}{d+r}\\ {d}\end{array}\right) = \mathbb P _r(T)\), it suffices to show that if \(v_h\) vanishes at the values (49), then \(v_h\) is identically zero.

If \(v_h\) vanishes at the values listed in (49b), then we easily conclude that \(v_h|_e = 0\). Therefore, we may write \(v_h = \lambda _e r_h\) for some \(r_h\in \mathbb P _{r-1}(T)\), where \(\lambda _e\) is the barycentric coordinate satisfying \(\lambda _e|_e = 0\). Since \(\lambda _e>0\) in \(T\), we conclude from (49a) that \(v_h\equiv 0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, T., Neilan, M. Convergence Analysis of a Symmetric Dual-Wind Discontinuous Galerkin Method. J Sci Comput 59, 602–625 (2014). https://doi.org/10.1007/s10915-013-9773-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9773-1

Keywords

Navigation