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Abstract

We present a linear iteration algorithm to implement a second-order energy stable nu-
merical scheme for a model of epitaxial thin film growth without slope selection. The PDE,
which is a nonlinear, fourth-order parabolic equation, is the L2 gradient flow of the energy∫

Ω

(
− 1

2 ln
(
1 + |∇φ|2

)
+ ε2

2 |∆φ(x)|2
)

dx. The energy stability is preserved by a careful choice

of the second-order temporal approximation for the nonlinear term, as reported in recent work
[18]. The resulting scheme is highly nonlinear, and its implementation is non-trivial. In this
paper, we propose a linear iteration algorithm to solve the resulting nonlinear system. To
accomplish this we introduce an O(s2) (with s the time step size) artificial diffusion term, a
Douglas-Dupont-type regularization, that leads to a contraction mapping property. As a re-
sult, the highly nonlinear system can be decomposed as an iteration of purely linear solvers,
which can be very efficiently implemented with the help of FFT in a collocation Fourier spec-
tral setting. We present a careful analysis showing convergence for the numerical scheme in a
discrete L∞(0, T ;H1) ∩L2(0, T ;H3) norm. Some numerical simulation results are presented to
demonstrate the efficiency of the linear iteration solver and the convergence of the scheme as a
whole.

keywords. epitaxial thin film growth, slope selection, energy stability, linear iteration, con-
traction mapping, Fourier collocation spectral

1 Introduction

In this article we consider an efficient numerical implementation of a second order accurate and
energy stable scheme for an epitaxial thin film growth model. (See the review [4] for the recent
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history of such models of thin film growth.) The equation is the gradient flow associated with the
following energy functional

E(φ) :=

∫
Ω

(
−1

2
ln
(
1 + |∇φ|2

)
+
ε2

2
|∆φ|2

)
dx , (1)

where Ω = [0, Lx] × [0, Ly], φ : Ω → R is a periodic height function, and ε is a constant. We
note that the first term, which is clearly non-quadratic, represents the Ehrlich-Schwoebel effect,
according to which migrating adatoms must overcome a higher energy barrier to stick to a step from
an upper rather than from a lower terrace [3, 10, 11, 17]. This results in an uphill atom current in
the dynamics and the steepening of mounds in the film. The second term, which is quadratic, but
of higher-order, represents the isotropic surface diffusion effect [11, 13]. For the Ehrlich-Schwoebel
term we will use the notation

Ec,1(φ) =

∫
Ω
Fc,1(∇φ) dx, Fc,1(y) = −1

2
ln
(
1 + |y|2

)
, (2)

where y ∈ R2 and |y| =
√
y2

1 + y2
2. Hence, E(φ) = Ec,1(φ) + ε2

2 ‖∆φ‖
2, where ‖ · ‖ denotes the

L2 norm. See, for example, [7]. Note that Fc,1 : R2 → R is bounded above by 0 and Fc,1 → −∞
as |y| → ∞. Since Fc,1 has no relative minima, there are no energetically favored values for |∇φ|.
This implies that there will be no mechanism in any energy-gradient dynamics model that could
select a preferred slope of the mounds. See the relevant discussions in [8, 9, 11, 12, 21].

The chemical potential is defined to be the variational derivative of the energy (1), i.e.,

µ := δφE = ∇ ·
(

∇φ
1 + |∇φ|2

)
+ ε2∆2φ, (3)

assuming such boundary conditions as make the boundary integral vanish. Herein we consider the
L2 gradient flow:

∂tφ = −µ = −∇ ·
(

∇φ
1 + |∇φ|2

)
− ε2∆2φ, (4)

where the boundary conditions for the height function φ are taken to be Ω-periodic. We refer to (4)
as the no-slope-selection equation, following most other references. Equation (4) may be rewritten
in the form

∂tφ = ∇ ·
(
|∇φ|2

1 + |∇φ|2
∇φ
)
−∆φ− ε2∆2φ . (5)

In the small-slope regime, where |∇φ|2 � 1, (5) may be replaced by

∂tφ = ∇ ·
(
|∇φ|2∇φ

)
−∆φ− ε2∆2φ , (6)

which we refer to as the slope-selection equation [8, 9, 11, 13]. Solutions to Eq. (6), unlike those
of Eq. (4), exhibit pyramidal structures, where the faces of the pyramids have slopes |∇φ| ≈ 1.
Solutions to the no-slope-selection equation (4), on the other hand, exhibit mound-like structures,
the slopes of which (on an infinite domain) may grow unbounded [11, 21]. Solutions of (6) and (4)
have up-down symmetry in the sense that there is no way to distinguish a hill from a valley. This
can be altered by adding adsorption/desorption or other dynamics. Both the slope selection (6)
and the no-slope selection (4) models are shown to be well posed in [11].

Numerical simulations of the model (4) with high order accuracy and energy stability have
attracted a great deal of attention in recent years. In the paper of Li and Liu [11], a classical
second order accurate semi-implicit numerical scheme (implicit for the linear term, explicit for
the nonlinear term) is applied. The numerical results showed reasonable stability, though the
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theoretical justification for such a scheme may not be easily available. Besides our own work,
there have been other efforts to devise and analyze schemes for the slope selection (6) and no-slope
selection (4) equations. Numerical schemes and analyses for the slope selection equation (6) can
be found in [2, 15, 16, 22]. Recent numerical methods and analyses for the model without slope
selection (4) can be found in [2, 14].

In [21], the authors studied an unconditionally energy stable scheme. The derivation of the
scheme is based on the idea of a convex splitting of the energy (1) into a purely convex part and
a purely concave part, motivated by Eyre’s earlier work [5]. But there are two shortcomings of
the scheme in [21]: it is only first order accurate (in time), and it is highly nonlinear, due to the
implicit treatment of the nonlinear term. In a more recent work [1], we introduced an efficient
linear, unconditionally stable, unconditionally solvable scheme for approximating solutions to the
no-slope-selection equation (4). The key idea of this linear scheme is an alternate, and more
advantageous, way of decomposing the energy into convex and concave terms, so that the nonlinear
part of the chemical potential is placed in the concave part instead of the convex part. As a result,
the implicit part of the chemical potential is completely linear. And numerical efficiency is greatly
improved (over the scheme in [21]) due to the fact that the linear operator involved in the scheme,
which is positive elliptic with constant coefficients, can be efficiently inverted by FFT.

It should be noted that the linear scheme in [1] is only first-order accurate in time. Second-
order (in time) accurate and energy stable schemes are discussed and analyzed in detailed in another
recent paper [18], for both the slope selection (6) and no-slope-selection models (4). These second
order schemes come in two varieties, those that inherit the variational structure of the original
continuous-in-time gradient flow or those that do not. But in either case, the unconditional energy
stability and unique nonlinear solvability are established in detail.

Meanwhile, these second order schemes are highly nonlinear, and their numerical implementa-
tions are highly non-trivial. In [18], we performed a second order accurate numerical simulation of
the slope-selection model (6), using the approach without preserving the variational structure. For
the slope-selection model, the nonlinear term is still in the polynomial format so that a nonlinear
conjugate gradient solver can be efficiently applied. However, for the no-slope-selection model (4),
the numerical difficulty associated with the high degree of nonlinearity is much more prominent,
due to the complicated terms appearing in the fractional quotients, either with or without the
preservation of the variational structures.

As a result, the numerical implementation of the second order accurate and unconditionally
energy stable scheme for the no-slope-selection model (4) has become a very challenging problem.
In this paper, we present an efficient linear iteration solver to implement it, with an introduction of
second order accurate O(s2) artificial diffusion term in the form of Douglas-Dupont regularization.
In turn, although the numerical scheme itself is highly nonlinear, we treat the nonlinear term explic-
itly at each iteration stage. Moreover, by a careful nonlinear analysis and using a subtle estimate of
the functional bound for the nonlinear quotient term in the no-slope-selection model, a contraction
mapping property is theoretically justified if a parameter associated with the artificial diffusion co-
efficient is greater than a given constant 5

4 . In other words, the highly nonlinear numerical scheme
can be very efficiently solved by such a linear iteration algorithm, and a geometric convergence rate
is assured for this linear iteration under the given constraint. Similar to the linear splitting scheme
reported in [1], the linear operator involved in the scheme, herein denoted L : H2

per →
(
H2
per

)∗
, is

positive elliptic with constant coefficients, and it can be efficiently inverted at the discrete level by
FFT or other existing fast linear solvers.

In addition to the unconditional energy stability and unique solvability of this second order
scheme, its convergence analysis is also non-trivial, due to the complicated nonlinear terms in a
quotient form. In this paper, we also provide a detailed convergence analysis and numerical error
estimate in H1 norm for this fully discrete scheme (with Fourier spectral differentiation in space),
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with a fixed final time. The convergence analysis follows the standard procedure of consistency and
stability estimates. In the error estimate, the key part is the control for the nonlinear error terms,
in which the bound can be obtained with the help of the specific quotient form in the no-slope-
selection model. Subsequently, a careful application of summation by parts in Fourier spectral
space leads to the convergence of the numerical scheme in a discrete L∞(0, T ;H1) ∩ L2(0, T ;H3)
norm.

The rest of the manuscript is organized as follows. In Section 2 we present the numerical
scheme. First we recall a second order convex splitting scheme for the no-slope-selection model (4)
with unconditional energy stability and unique solvability, as reported in [18]. Then we propose
an O(s2) artificial diffusion term in the form of a Douglas-Dupont-type regularization, and a linear
iteration algorithm to implement it. We show that the unconditional energy stability is preserved
for such an addition of artificial diffusion, and the corresponding linear iteration algorithm is assured
to be a contraction mapping under a condition for the artificial diffusion constant. In Section 3 we
present the fully discrete scheme, where Fourier spectral differentiation is utilized in space. The
convergence analysis is provided in Section 4. In Section 5 we present some numerical simulation
results. We offer our concluding remarks in Section 6.

2 The Numerical Scheme

2.1 A Second-Order Convex Splitting Scheme

Second order accurate convex splitting schemes for the epitaxial thin film growth models, with and
without slope selection(see (6) and (4)), were studied in detail in a recent article [18]. Two variants
were presented: those schemes that preserve the variational structure of the gradient flow, and
those that do not. For simplicity, we recall the one without variational structure. The extension of
our method to the scheme with the variational structure can be carried out in a similar manner.

First, consider the energy decomposition given by E(φ) = Ec,1 + Ec,2 − Ee, where

Ec,1 = −1

2

∫
Ω

ln
(
1 + |∇φ|2

)
dx, Ec,2 =

1

2

∫
Ω

{
A |∇φ|2 +

(
ε2 +B

)
(∆φ)2

}
dx, (7)

Ee =
1

2

∫
Ω

{
A|∇φ|2 +B(∆φ)2

}
dx, (8)

where A and B are artificial splitting parameters. It is straight forward to show that the contractive
part, Ec := Ec,1 +Ec,2 is convex, provided A ≥ 1 and B ≥ 0. The expansive part, Ee, is convex for
any A,B ≥ 0. Our second-order scheme will respect this convex splitting, and in doing so we can
guarantee unconditional stability and unconditional uni-solvency of the scheme, as we show below.

To describe the scheme, we first focus on the treatment of the logarithmic, non-quadratic part
of the energy density. For the logarithmic term, set L(x, y) = ln

(
1 + x2 + y2

)
. Suppose that

ψ,φ ∈ R2 are given, with ψ = (ψx, ψy)
T and φ = (φx, φy)

T . Define

Lx (ψ,φ) =


−1

4

L(ψx, ψy)− L(φx, ψy)

ψx − φx
− 1

4

L(ψx, φy)− L(φx, φy)

ψx − φx
, if ψx 6= φx,

−1

2

ψx
1 + (ψx)2 + (ψy)2

− 1

2

ψx
1 + (ψx)2 + (φy)2

, if ψx = φx,
(9)

Ly (ψ,φ) =


−1

4

L(ψx, ψy)− L(ψx, φy)

ψy − φy
− 1

4

L(φx, ψy)− L(φx, φy)

ψy − φy
, if ψy 6= φy,

−1

2

ψy
1 + (ψx)2 + (ψy)2

− 1

2

ψy
1 + (φx)2 + (ψy)2

, if ψy = φy.
(10)
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Now, define

µ
n+1/2
c,1 := µc,1(φn+1, φn) := −∂xLx

(
∇φn+1,∇φn

)
− ∂yLy

(
∇φn+1,∇φn

)
. (11)

The second order convex splitting scheme for the no slope selection model (4) is given by

φn+1 − φn

s
= −µn+1/2

c,1 − ε2

2
∆2
(
φn+1 + φn

)
+
A

2
∆
(
φn+1 + φn

)
−A∆

(
3

2
φn − 1

2
φn−1

)
−B

2
∆2
(
φn+1 + φn

)
+B∆2

(
3

2
φn − 1

2
φn−1

)
, (12)

in which s is the time step size. In respecting the convex splitting introduced above, we have
treated the contribution to the chemical potential from the contractive part, Ec, using an implicit
Crank-Nicholson/secant approximation, and the contribution from the expansive part, Ee, using
an explicit Adams-Bashforth approximation.

Employing the notation
∆̃sφ

n := φn+1 − 2φn + φn−1, (13)

the scheme writes as

φn+1 − φn

s
= −µn+1/2

c,1 − ε2

2
∆2
(
φn+1 + φn

)
+
A

2
∆
(

∆̃sφ
n
)
− B

2
∆2
(

∆̃sφ
n
)
. (14)

Theorem 2.1. For any A ≥ 0 and any B ≥ 0 the scheme (14) is second order, i.e., its local
truncation error is O

(
s2
)
, and is unconditionally strongly energy stable with respect to the discrete

energy

E(φn, φn−1) := E(φn) +
A

4

∥∥∇ (φn − φn−1
)∥∥2

L2 +
B

4

∥∥∆
(
φn − φn−1

)∥∥2

L2 , (15)

i.e., E(φn+1, φn) ≤ E(φn, φn−1), for any n ≥ 1, and any s > 0. Furthermore, if A ≥ 1 the scheme
is unconditionally uniquely solvable.

Proof. The assertion regarding the order of the method can be verified by Taylor expansions,
assuming sufficient regularity. We omit the details for brevity. For energy stability, we use the
identities

−
(
φn+1 − φn, µn+1/2

c,1

)
= −Ec,1(φn+1) + Ec,1(φn), (16)

which follows from the careful construction of µ
n+1/2
c,1 [18],

A

2

(
φn+1 − φn,∆

(
∆̃sφ

n
))

= −A
4

∥∥∇ (φn+1 − φn
)∥∥2

L2 +
A

4

∥∥∇ (φn − φn−1
)∥∥2

L2

−A
4

∥∥∥∇(∆̃sφ
n
)∥∥∥2

L2
, (17)

−B
2

(
φn+1 − φn,∆2

(
∆̃sφ

n
))

= −B
4

∥∥∇ (φn+1 − φn
)∥∥2

L2 +
B

4

∥∥∆
(
φn − φn−1

)∥∥2

L2

−B
4

∥∥∥∆
(

∆̃sφ
n
)∥∥∥2

L2
, (18)

and

−ε
2

2

(
φn+1 − φn,∆2

(
φn+1 + φn

))
= −ε

2

2

∥∥∆φn+1
∥∥2

L2 +
ε2

2
‖∆φn‖2L2 . (19)

Testing the scheme (14) with φn+1−φn, using the identities above, and rearranging terms, we have

E
(
φn+1, φn

)
+
A

4

∥∥∥∇(∆̃sφ
n
)∥∥∥2

L2
+
B

4

∥∥∥∆
(

∆̃sφ
n
)∥∥∥2

L2
+ s

∥∥∥∥φn+1 − φn

s

∥∥∥∥2

L2

= E
(
φn, φn−1

)
, (20)

which proves the unconditional energy stability. The assertion regarding the unconditional solv-
ability follows from similar arguments in [18], and we omit the details here.
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2.2 A Linear Iteration Scheme

The unconditional energy stability and unique solvability of the second order scheme (14) having
been established, it remains to efficiently “invert” the method at each time step. However, the
numerical implementation of the scheme is clearly a challenge, due to its highly nonlinear nature.
In this section, we propose a linear iteration method to solve the scheme, and prove that the
iteration in question always converges to the unique solution of (14) if the splitting parameter A is
chosen judiciously.

From here let us fix the value of one of the splitting parameters, setting B = ε2

2 . The scheme
(14) then becomes

φn+1 − φn

s
= −µn+1/2

c,1 +
A

2
∆
(

∆̃sφ
n
)
− ε2∆2

(
3

4
φn+1 +

1

4
φn−1

)
. (21)

The splitting parameter A will be chosen later; for now we only assume that A ≥ 1, so that the
scheme enjoys unconditional solvability. The purpose for taking B > 0 is to place heavier weight on
the highest order linear term at the time step tn+1. This has the effect to simplify the convergence
analysis that will follow later. Our choice of B fixes the discrete energy for the scheme to be

E(φn, φn−1) := E(φn) +
A

4

∥∥∇ (φn − φn−1
)∥∥2

L2 +
ε2

8

∥∥∆
(
φn − φn−1

)∥∥2

L2 . (22)

Now, the scheme (21) can be rewritten as

L
(
φn+1

)
:=

(
1

s
I − A

2
∆ +

3ε2

4
∆2

)
φn+1 = −µc,1(φn+1, φn) + F

(
φn, φn−1

)
, (23)

where

F
(
φn, φn−1

)
:=

1

s
φn +

A

2
∆
(
−2φn + φn−1

)
− ε2

4
∆2φn−1. (24)

Recall, µc,1(φn+1, φn) = µ
n+1/2
c,1 , as defined in (11). L is a positive, linear, constant coefficient

differential operator.
Now, we propose the following linear iteration method to solve the scheme (23): given φn, φn−1,

and ψk smooth enough and periodic, find the unique periodic solution, ψk+1, that satisfies

L
(
ψk+1

)
= −µc,1(ψk, φn) + F

(
φn, φn−1

)
. (25)

Here k stands for the iteration index, not the time step index. The method is initialized via
ψ0 := φn. Clearly, ψ = φn+1 is the unique fixed point solution:

L(ψ) = −µc,1(ψ, φn) + F
(
φn, φn−1

)
. (26)

We now prove that the linear fixed point iteration (25) must converge, and therefore to the unique
fixed point, provided A is sufficiently large.

Theorem 2.2. The linear iteration (25) is a contraction mapping provided that α :=
√

3ε√
s

+ A
2 > 5

4 .

Two preliminary estimates are needed for the proof the theorem and are given in the next two
lemmas.
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Lemma 2.3. Let a, b ∈ R be arbitrary but fixed. Define h1 : R→ R via

h1(x) =


L(x, a)− L(b, a)

x− b
, if x 6= b,

2b

1 + b2 + a2
, if x = b.

(27)

Then h1 ∈ C1(R) and |h′1(x)| ≤ 2, for all x ∈ R.

Proof. Define f(x) := L(x, a) = ln(1 + x2 + a2) for any x ∈ R. It is clear that h1(x) = f(x)−f(b)
x−b for

x 6= b and h1 is at least twice continuously differentiable for all such x. A direct calculation yields

h′1(x) =
f ′(x) · (x− b)− (f(x)− f(b))

(x− b)2
=
f ′(x)− f(x)−f(b)

x−b
x− b

. (28)

Without loss of generality, suppose x < b. An application of the mean value theorem gives

f(x)− f(b)

x− b
= f ′(ξ), (29)

for some ξ ∈ (x, b). We obtain

h′1(x) =
f ′(x)− f ′(ξ)

x− b
=
f ′′(η)(x− ξ)

x− b
, (30)

for some η ∈ (x, ξ), where we have invoked the mean value theorem a second time in the last step.
We clearly have |x− ξ| ≤ |x− b|, and, as a result, we arrive at∣∣h′1(x)

∣∣ ≤ ∣∣f ′′(η)
∣∣ ≤ max

η∈(x,b)

∣∣f ′′(η)
∣∣ . (31)

Meanwhile, we have

f ′(x) =
2x

1 + x2 + a2
, f ′′(x) =

2(1− x2 + a2)

1 + x2 + a2
, and max

x∈R

∣∣f ′′(x)
∣∣ ≤ 2. (32)

The result then follows from (31).
Now, a detailed Taylor expansion for f shows that

f(x) = ln(1 + x2 + a2) = f(b) +
2b

1 + b2 + a2
· (x− b) +

1− ζ2 + a2

(1 + ζ2 + a2)2
· (x− b)2, (33)

for some ζ = ζ(x) between x and b. This in turn yields

h1(x) =
f(x)− f(b)

x− b
=

2b

1 + b2 + a2
+

1− ζ2 + a2

(1 + ζ2 + a2)2
· (x− b), (34)

so that
h1(x)− h1(b)

x− b
=

1− ζ2 + a2

(1 + ζ2 + a2)2
. (35)

Since ζ → b as x→ b, we have

h′1(b) =
1− b2 + a2

(1 + b2 + a2)2
. (36)

From here it is easy to show that |h′1(b)| ≤ 1, and the result is proven.
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Lemma 2.4. Let a, b ∈ R be arbitrary but fixed. Define h2 : R→ R via

h2(x) =


L(a, x)− L(b, x)

a− b
, if a 6= b,

2a

1 + a2 + x2
, if a = b.

(37)

Then h2 ∈ C1(R) and |h′2(x)| ≤ 1, for all x ∈ R.

Proof. If a 6= b, a direct calculation shows that

h′2(x) =
−2x(a+ b)

(1 + a2 + x2)(1 + b2 + x2)
. (38)

From this, it is straightforward to show that |h′2(x)| ≤ 1 for all x, a, b ∈ R. On the other hand, if
a = b, we have

h′2(x) =
−4xa

(1 + a2 + x2)2
. (39)

It easily follows that |h′2(x)| ≤ 1 for all x, a ∈ R, and the result is proven.

We now proceed to prove the theorem.

Proof of Theorem 2.2. Let ψ ∈ H4
per(Ω) be the unique solution to (26) and define the iteration

error at each stage via
ek := ψk − ψ, (40)

where ψk ∈ H4
per(Ω) is the kth iterate generated by the linear iteration scheme (25). Subtracting

(26) from (25) yields

L
(
ek+1

)
= ∇ ·

(
Lx
(
∇ψk,∇φn

)
− Lx (∇ψ,∇φn)

Ly
(
∇ψk,∇φn

)
− Ly (∇ψ,∇φn)

)
. (41)

Taking the inner product with ek+1 leads to(
L
(
ek+1

)
, ek+1

)
=

1

s

∥∥∥ek+1
∥∥∥2

+
A

2

∥∥∥∇ek+1
∥∥∥2

+
3ε2

4

∥∥∥∆ek+1
∥∥∥2

= −
(
Lx
(
∇ψk,∇φn

)
− Lx (∇ψ,∇φn) , ∂xe

k+1
)

−
(
Ly
(
∇ψk,∇φn

)
− Ly (∇ψ,∇φn) , ∂ye

k+1
)
. (42)

Now, define

N1 :=
L
(
∂xψ

k, ∂yψ
k
)
− L

(
∂xφ

n, ∂yψ
k
)

∂xψk − ∂xφn
−L (∂xψ, ∂yψ)− L (∂xφ

n, ∂yψ)

∂xψ − ∂xφn
,

N2 :=
L
(
∂xψ

k, ∂yφ
n
)
− L (∂xφ

n, ∂yφ
n)

∂xψk − ∂xφn
−L (∂xψ, ∂yφ

n)− L (∂xφ
n, ∂yφ

n)

∂xψ − ∂xφn
. (43)

Then, with Lx as in (9), we have

Lx
(
∇ψk,∇φn

)
− Lx (∇ψ,∇φn) = −1

4
(N1 +N2) . (44)

The second nonlinear error term N2 can be represented as

N2 = h1

(
∂xψ

k
)
− h1 (∂xψ) , with a = ∂yφ

n, b = ∂xφ
n. (45)

8



An application of the mean value theorem and Lemma 2.3 yields point-wise estimate

|N2(x)| ≤
∣∣h′1(ξ(x))

∣∣ · ∣∣∣∂xψk(x)− ∂xψ(x)
∣∣∣ ≤ 2

∣∣∣∂xek(x)
∣∣∣ , ∀x ∈ Ω, (46)

where ξ(x) is between ∂xψ
k
x(x) and ∂xψ(x).

Note that for the first nonlinear error term N1, neither Lemma 2.3 nor Lemma 2.4 can be
applied directly. Instead, we perform the following, further decomposition: N1 = N3 +N4, with

N3 :=
L
(
∂xψ

k, ∂yψ
)
− L (∂xφ

n, ∂yψ)

∂xψk − ∂xφn
− L (∂xψ, ∂yψ)− L (∂xφ

n, ∂yψ)

∂xψ − ∂xφn
,

N4 :=
L
(
∂xψ

k, ∂yψ
k
)
− L

(
∂xφ

n, ∂yψ
k
)

∂xψk − ∂xφn
−
L
(
∂xψ

k, ∂yψ
)
− L (∂xφ

n, ∂yψ)

∂xψk − ∂xφn
. (47)

Observe that N3 and N4 can be represented as

N3 =h1

(
∂xψ

k
)
− h1 (∂xψ) , with a = ∂yψ, b = ∂xφ

n, (48)

N4 =h2

(
∂yψ

k
)
− h2 (∂yψ) , with a = ∂xψ

k, b = ∂xφ
n. (49)

Now, applications of the mean value theorem and Lemmas 2.3 and 2.4 result in the point-wise
estimates

|N3(x)| ≤
∣∣h′1 (ξ1(x))

∣∣ · ∣∣∣∂xψk(x)− ∂xψ(x)
∣∣∣ ≤ 2

∣∣∣∂xek(x)
∣∣∣ , ∀x ∈ Ω, (50)

|N4(x)| ≤
∣∣h′2 (ξ2(x))

∣∣ · ∣∣∣∂yψk(x)− ∂yψ(x)
∣∣∣ ≤ ∣∣∣∂yek(x)

∣∣∣ , ∀x ∈ Ω. (51)

Substitution of (46), (50), and(51) into (44) yields the point-wise estimate∣∣∣Lx (∇ψk,∇φn)− Lx (∇ψ,∇φn)
∣∣∣ ≤ ∣∣∣∂xek∣∣∣+

1

4

∣∣∣∂yek∣∣∣ . (52)

With an application of Cauchy’s inequality, we arrive at

−
(
Lx
(
∇ψk,∇φn

)
− Lx (∇ψ,∇φn) , ∂xe

k+1
)
≤

(∣∣∣∂xek∣∣∣ , ∣∣∣∂xek+1
∣∣∣)+

1

4

(∣∣∣∂yek∣∣∣ , ∣∣∣∂xek+1
∣∣∣)

≤ 1

2

∥∥∥∂xek∥∥∥2
+

1

8

∥∥∥∂yek∥∥∥2
+

5

8

∥∥∥∂xek+1
∥∥∥2
.

(53)

The second component of the nonlinear error term associated with Ly can be analyzed in exactly
the same fashion. Specifically, one obtains the point-wise estimate∣∣∣Ly (∇ψk,∇φn)− Ly (∇ψ,∇φn)

∣∣∣ ≤ 1

4

∣∣∣∂xek∣∣∣+
∣∣∣∂yek∣∣∣ , (54)

which, in turn, yields

−
(
Ly
(
∇ψk,∇φn

)
− Ly (∇ψ,∇φn) , ∂ye

k+1
)
≤ 1

8

∥∥∥∂xek∥∥∥2
+

1

2

∥∥∥∂yek∥∥∥2
+

5

8

∥∥∥∂yek+1
∥∥∥2
. (55)

Finally, a substitution of (53), (55) into (42) yields

1

s

∥∥∥ek+1
∥∥∥2

+

(
A

2
− 5

8

)∥∥∥∇ek+1
∥∥∥2

+
3

4
ε2
∥∥∥∆ek+1

∥∥∥2
≤ 5

8

∥∥∥∇ek∥∥∥2
. (56)
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On the other hand, an application of Cauchy inequality shows that

1

s
‖f‖2 +

3

4
ε2 ‖∆f‖2 ≥ 2

√
1

s
· 3

4
ε2 ‖f‖ · ‖∆f‖ =

√
3ε√
s
‖f‖ · ‖∆f‖ ≥

√
3ε√
s
‖∇f‖2 , (57)

for any f ∈ H2
per(Ω). The last step comes from a simple estimate based on integration by parts:

for all f ∈ H2
per(Ω),

‖∇f‖2 = − (f,∆f) ≤ ‖f‖ · ‖∆f‖ . (58)

Now, going back to (56) and using (57), we get(√
3ε√
s

+
A

2
− 5

8

)∥∥∥∇ek+1
∥∥∥2
≤ 5

8

∥∥∥∇ek∥∥∥2
. (59)

As a result, the contraction mapping property is assured under the following condition

α :=

√
3ε√
s

+
A

2
>

5

4
. (60)

The result is proven.

3 A Fully Discrete Scheme

3.1 A Collocation Fourier Spectral Discretization of Space

So far, we have ignored the discretization of space, which is required for a fully practical method
and implementation. Of course, Galerkin (spectral or finite element) methods will automatically
inherit the properties described above. One can also use finite difference or collocation methods,
the idea being to mimic the variational structure using summation-by-parts formulae and carefully
constructed finite difference operators. In [18] we used a finite difference method and in [1] we used
a spectral collocation method in precisely this way.

Motivated by the presence of the constant coefficient linear operator L appearing in the linear
iteration scheme (25), together with the assumption of periodic boundary conditions, a natural
choice here is to use collocation Fourier spectral differentiation in spatial discretization. Assume
that Lx = Nx · hx and Ly = Ny · hy, for some mesh sizes hx, hy > 0 and some positive integers Nx

and Ny. For simplicity of presentation, we use a square domain, i.e., Lx = Ly = L, and a uniform
mesh: hx = hy = h, Nx = Ny = N . We will always assume that N is even. All the variables are
evaluated/defined at the regular numerical grid vertices (pi, pj), 0 ≤ i, j ≤ N , where pi = i · h.

For a periodic grid function f : {0, . . . , N − 1} × {0, . . . , N − 1} → R, its discrete Fourier
expansion is given by

fi,j =

N/2∑
k,l=−N/2+1

f̂k,le
2πi
L

(kpi+lpj). (61)

The f̂k,l are the collocation Fourier coefficients and are different from the regular Fourier coefficients,
in general, due to aliasing error. However, the two are equivalent if the continuous “version” of
f is in PN , the span of the trigonometric polynomials of degree not greater than N/2. See, for
example [19].
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The collocation Fourier spectral approximations to the first and second order partial derivatives
(in the x direction) of f are given by

(DN,xf)i,j =

N/2∑
k,l=−N/2+1

(
2kπi

L

)
f̂k,le

2πi(kpi+lpj)/L, (62)

(
D2
N,xf

)
i,j

=

N/2∑
k,l=−N/2+1

(
−4π2k2

L2

)
f̂k,le

2πi(kpi+lpj)/L. (63)

The corresponding collocation spectral differentiations in the y direction can be defined in the same
way. In turn, the discrete Laplacian, gradient and divergence operators become

∆Nf = D2
N,xf +D2

N,yf , ∇Nf =

(
DN,xf
DN,yf

)
, ∇N ·

(
fx
fy

)
= DN,xfx +DN,yfy , (64)

all at the point-wise level.
The fully discrete scheme is formulated as follows: given periodic grid functions φn−1 and φn,

find the periodic grid function φn+1 that satisfies

φn+1 − φn

s
= ∇N ·

(
Lx
(
∇Nφn+1,∇Nφn

)
Ly
(
∇Nφn+1,∇Nφn

) )
+
A

2
∆N

(
∆̃sφ

n
)
− ε2∆2

N

(
3

4
φn+1 +

1

4
φn−1

)
. (65)

with the logarithmic flux terms Lx, Ly given in (9) and (10). The corresponding linear algorithm
becomes

LN
(
ψk+1

)
:=

(
1

s
− A

2
∆N +

3

4
ε2∆2

N

)
ψk+1

= ∇N ·
(

Lx
(
∇Nψk,∇Nφn

)
Ly
(
∇Nψk,∇Nφn

) )− FN (φn, φn−1
)
, (66)

with the forcing term FN
(
φn, φn−1

)
:= 1

sφ
n + A

2 ∆N

(
−2φn + φn−1

)
− 1

4ε
2∆2

Nφ
n−1. The spatially

discrete fixed point, ψ, satisfies

LN (ψ) = ∇N ·
(

Lx (∇Nψ,∇Nφn)
Ly (∇Nψ,∇Nφn)

)
− FN

(
φn, φn−1

)
. (67)

The unique solvability of the fully discrete linear iteration scheme (66) (at each iteration stage,
k) is clear. For each discrete eigenfunction e2πi(kpi+lpj)/L, the corresponding eigenvalue for the
operator LN is precisely

λk,l :=
1

s
− A

2
(λk + λl) +

3

4
ε2 (λk + λl)

2 > 0, (68)

with λk = −4π2k2

L2 , λl = −4π2l2

L2 . This implies the unique unconditional solvability of the fully
discrete algorithm (66). Naturally, the FFT can be very efficiently utilized to invert LN and,
therefore, to obtain numerical solutions.
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3.2 Fully Discrete Energy Stability

Similar to an earlier work [1], we define a fully discrete analogue of the energy (1) and establish a
discrete version of the global in time energy stability property, regardless of the time step size s
and independent of the spatial resolution N . With any periodic grid functions f and g (over the
2D numerical grid described above), the discrete approximations to the L2 norm and inner product
are given as

‖f‖2 =
√
〈f, f〉 , with 〈f, g〉 = h2

N−1∑
i=0

N−1∑
j=0

fi,jgi,j . (69)

A careful calculation shows that the following summation by parts formulas are valid:〈
f,∇N ·

(
g1

g2

)〉
= −

〈
∇Nf,

(
g1

g2

)〉
, (70)

〈f,∆Ng〉 = −〈∇Nf,∇Ng〉 ,
〈
f,∆2

Ng
〉

= 〈∆Nf,∆Ng〉 ; (71)

see the related derivations in [1]. The fully discrete energy is defined as

EN (φ) = Ec,1,N (φ) +
ε2

2
‖∆Nφ‖22 , Ec,1,N (φ) = h2

N−1∑
i=0

N−1∑
j=0

(
−1

2
ln
(

1 + |∇Nφ|2
)
i,j

)
. (72)

The proof of the following result is similar to the spatially continuous case and is, therefore,
skipped to keep the presentation short.

Theorem 3.1. For any A ≥ 0 the scheme (65) is second order in time and spectrally accurate
in space, i.e., its local truncation error is O (hm) + O

(
s2
)
, and is unconditionally strongly energy

stable with respect to the discrete energy

EN (φn, φn−1) := EN (φn) +
A

4

∥∥∇N (φn − φn−1
)∥∥2

2
+
B

4

∥∥∆N

(
φn − φn−1

)∥∥2

2
, (73)

i.e., EN (φn+1, φn) ≤ EN (φn, φn−1), for any n ≥ 1, and any s > 0. Furthermore, if A ≥ 1 the fully
discrete scheme is unconditionally uniquely solvable.

In addition to the unconditional energy stability, the following proposition states a global in
time bound for ‖∆φ‖22 of the numerical solution.

Lemma 3.2. Let Φ ∈ H4
per(Ω). Suppose that φ0

i,j := Φ(pi, pj) and φ−1 ≡ φ0. Then, for solutions
of the fully discrete second order scheme (65), we have the global in time bounds

EN (φn) ≤ C0, ‖∆Nφ
n‖22 ≤ C1, (74)

for any n ≥ 1, and any h and s, where C0, C1 > 0 depend upon ε, L and the data, but are
independent of the step sizes h and s and of the final time T .

Proof. First, by the energy stability above and the definition of EN ,

EN (φn) ≤ EN (φn, φn−1) ≤ · · · ≤ EN (φ0, φ−1) = EN (φ0) ≤ Ch4 + E(Φ) ≤ C0, (75)

where a consistency argument for the collocation spectral approximation is applied in the last steps.
For the second part, we need the point-wise estimate (see [1, 21])

F (y) = −1

2
ln
(

1 + |y|2
)
≥ −1

2

(
β |y|2 − ln(β) + β − 1

)
, ∀ 0 < β ≤ 1, ∀ y ∈ R2, (76)
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and the following discrete elliptic regularity estimate in 2D: for all periodic grid functions φ,

‖∆Nφ‖22 ≥ C2 ‖∇Nφ‖22 , C2 =
4π2

L2
. (77)

Then, with the choice of β = ε2C2
2 , we obtain, for all periodic grid functions φ,

EN (φ) ≥ L2

2

(
ln

(
ε2C2

2

)
− ε2C2

2
+ 1

)
+
ε2

4
‖∆Nφ‖22 . (78)

This, in turn, shows that

‖∆Nφ
n‖22 ≤ 4

ε2

(
EN (φn) +

L2

2

(
− ln

(
ε2C2

2

)
+
ε2C1

2
− 1

))
≤ 4

ε2

(
EN (φ0) +

L2

2

(
− ln

(
ε2C2

2

)
+
ε2C2

2
− 1

))
≤ 4

ε2

(
C0 +

L2

2

(
− ln

(
ε2C2

2

)
+
ε2C2

2
− 1

))
=: C1. (79)

Remark 3.3. It is clear that the numerical solution of the fully discrete second order scheme (65)
is mass-conserving at the discrete level, i.e., φn+1 = φn = φ0, where

f :=
1

N2

N−1∑
i,j=0

fi,j . (80)

Without loss of generality, we may assume that φ0 = 0 so that φn = 0, for n = 0, 1, 2, . . ., since
only the gradient of φ is of consequence. Under this assumption, a discrete elliptic regularity can
be applied so that we obtain a global in time H2 bound for the numerical solution, at the discrete
level:

‖φnN‖H2 ≤ C ‖∆φnN‖L2 ≤ C
√
C1 =: C3, (81)

where φnN is the continuous version of the discrete numerical solution φn obtained by interpolating
into the space PN . Note that C3 is also a global in time constant, only dependent upon ε, L, and
the initial data.

Remark 3.4. There are some alternate approaches to develop the energy stability for a second
order accurate numerical scheme for the no-slope-selection model (4), in a modified way. For
instance, in a very recent article [14], the authors found a certain PDE satisfied by the nonlinear
integrand appearing in the nonlinear energy (1), and proposed a second order scheme to update such
a nonlinear integrand. In turn, an alternate energy was defined and the non-increasing property was
proved for the scheme with respect to the alternate energy. While the approach in [14] represents
a clever way to achieve the desired numerical stability – since it avoids the complicated form of
the nonlinear energy in the numerical scheme – it appears that such an alternate energy stability
cannot assure an H2 stability of the variable φ at the theoretical level. To the best of the authors’
knowledge, the schemes presented in [18] and the linear iteration algorithm given by this paper are
the only second order numerical schemes in which a global in time H2 stability can be established
for the height function φ.
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3.3 Contraction for the Fully Discrete Linear Iteration Method

For the fully discrete linear iteration scheme (66), all of the derivations and estimates in the
proof of Theorem 2.2 can be extended to the spatially discrete case, with summation-by-parts
replacing integration-by-parts in the arguments. The proof of the following is skipped for brevity
of presentation.

Theorem 3.5. The fully discrete linear iteration defined in (66) is a contraction mapping provided

that α :=
√

3ε√
s

+ A
2 > 5

4 .

4 Convergence Analysis for the Fully Discrete Scheme

We present a detailed convergence analysis for the fully discrete second order scheme (65) in this
section. To simplify the presentation, a preliminary estimate for the nonlinear error term is given
in the following lemma. For brevity, we state this preliminary result in the case with space kept
continuous. It extension to the fully discrete error estimate is straightforward and we will cite this
lemma in later analysis.

Lemma 4.1. Let Φn,Φn+1, φn, φn+1 ∈ C1
per(Ω) be arbitrary, and define ek := Φk−φk, k = n, n+1.

Then∣∣Lx (∇Φn+1,∇Φn
)
− Lx

(
∇φn+1,∇φn

)∣∣ ≤ (∣∣∂xen+1
∣∣+ |∂xen|

)
+

1

4

(∣∣∂yen+1
∣∣+ |∂yen|

)
, (82)∣∣Ly (∇Φn+1,∇Φn

)
− Ly

(
∇φn+1,∇φn

)∣∣ ≤ 1

4

(∣∣∂xen+1
∣∣+ |∂xen|

)
+
(∣∣∂yen+1

∣∣+ |∂yen|
)
. (83)

Proof. For the term Lx, we start from the following calculation:

Lx
(
∇Φn+1,∇Φn

)
− Lx

(
∇φn+1,∇φn

)
= −1

4

(
L
(
∂xΦn+1, ∂yΦ

n+1
)
− L

(
∂xΦn, ∂yΦ

n+1
)

∂xΦn+1 − ∂xΦn
−

L
(
∂xφ

n+1, ∂yφ
n+1
)
− L

(
∂xφ

n, ∂yφ
n+1
)

∂xφn+1 − ∂xφn

)

−1

4

(
L
(
∂xΦn+1, ∂yΦ

n
)
− L (∂xΦn, ∂yΦ

n)

∂xΦn+1 − ∂xΦn
−

L
(
∂xφ

n+1, ∂yφ
n)− L(∂xφ

n, ∂yφ
n
)

∂xφn+1 − ∂xφn

)
. (84)

The first term appearing above can be decomposed as follows:

L(∂xΦn+1, ∂yΦ
n+1)− L(∂xΦn, ∂yΦ

n+1)

∂xΦn+1 − ∂xΦn
− L(∂xφ

n+1, ∂yφ
n+1)− L(∂xφ

n, ∂yφ
n+1)

∂xφn+1 − ∂xφn

= N5 +N6 +N7, (85)

where

N5 :=
L
(
∂xΦn+1, ∂yΦ

n+1
)
− L

(
∂xΦn, ∂yΦ

n+1
)

∂xΦn+1 − ∂xΦn
−
L
(
∂xφ

n+1, ∂yΦ
n+1
)
− L

(
∂xΦn, ∂yΦ

n+1
)

∂xφn+1 − ∂xΦn
, (86)

N6 :=
L
(
∂xΦn, ∂yΦ

n+1
)
− L

(
∂xφ

n+1, ∂yΦ
n+1
)

∂xΦn − ∂xφn+1
−
L
(
∂xφ

n, ∂yΦ
n+1
)
− L

(
∂xφ

n+1, ∂yΦ
n+1
)

∂xφn − ∂xφn+1
, (87)

N7 :=
L
(
∂xφ

n+1, ∂yΦ
n+1
)
− L

(
∂xφ

n, ∂yΦ
n+1
)

∂xφn+1 − ∂xφn
−
L
(
∂xφ

n+1, ∂yφ
n+1
)
− L

(
∂xφ

n, ∂yφ
n+1
)

∂xφn+1 − ∂xφn
. (88)
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The following representations are clear:

N5 = h1

(
∂xΦn+1

)
−h1

(
∂xφ

n+1
)
, a = ∂yΦ

n+1, b = ∂xΦn, (89)

N6 = h1 (∂xΦn) −h1 (∂xφ
n) , a = ∂yΦ

n+1, b = ∂xφ
n+1, (90)

N7 = h2

(
∂yΦ

n+1
)
−h2

(
∂yφ

n+1
)
, a = ∂xφ

n+1, b = ∂xφ
n. (91)

Similar to (46), (50), (51), applications of the mean value theorem and Lemmas 2.3 and 2.4 result
in the point-wise estimates

|N5(x)| ≤
∣∣h′1(ξ1(x))

∣∣ · ∣∣∂xΦn+1(x)− ∂xφn+1(x)
∣∣ ≤ 2

∣∣∂xen+1(x)
∣∣ , ∀x ∈ Ω, (92)

|N6(x)| ≤
∣∣h′1(ξ2(x))

∣∣ · |∂xΦn(x)− ∂xφn(x)| ≤ 2 |∂xen(x)| , ∀x ∈ Ω, (93)

|N7(x)| ≤
∣∣h′2(ξ3(x))

∣∣ · ∣∣∂yΦn+1(x)− ∂y(x)φn+1
∣∣ ≤ ∣∣∂yen+1(x)

∣∣ , ∀x ∈ Ω. (94)

Then we arrive at∣∣∣∣∣L
(
∂xΦn+1, ∂yΦ

n+1
)
− L

(
∂xΦn, ∂yΦ

n+1
)

∂xΦn+1 − ∂xΦn
−

L
(
∂xφ

n+1, ∂yφ
n+1
)
− L

(
∂xφ

n, ∂yφ
n+1
)

∂xφn+1 − ∂xφn

∣∣∣∣∣
≤ 2

(∣∣∂xen+1
∣∣+ |∂xen|

)
+
∣∣∂yen+1

∣∣ . (95)

The second term in (84) can be analyzed in an analogous manner; the details of the following
are omitted for the sake of brevity:∣∣∣∣∣L

(
∂xΦn+1, ∂yΦ

n
)
− L (∂xΦn, ∂yΦ

n)

∂xΦn+1 − ∂xΦn
−

L
(
∂xφ

n+1, ∂yφ
n
)
− L (∂xφ

n, ∂yφ
n)

∂xφn+1 − ∂xφn

∣∣∣∣∣
≤ 2

(∣∣∂xen+1
∣∣+ |∂xen|

)
+ |∂yen| . (96)

A combination of (84), (95) and (96) results in (82). The estimate (83) involving Ly is derived by
a similar approach. The result is proven.

The convergence theorem for the fully discrete second order scheme (65) is stated below.

Theorem 4.2. Denote by Φ the exact smooth, periodic solution for the no-slope-selection model
(4). Set φ0

i,j := Φ(pi, pj , 0) and φ−1 ≡ φ0. Define eni,j := Φ (xi, yj , s · n) − φni,j, with φ the fully
discrete solution for the second order scheme (65). Then, provided s is sufficiently small, we
have the following error estimate in a discrete L∞(0, T ;H1) ∩ L2(0, T ;H3) norm: for any k, with
1 ≤ k ≤ T/s, ∥∥∥∇Nek∥∥∥

2
+

(
sε2

4

k∑
l=1

∥∥∥∇N (∆Ne
l
)∥∥∥2

2

)1/2

≤ C
(
s2 + hm

)
, (97)

where C > 0 is a constant that depends upon ε, L, the final time T , and the exact solution Φ, but
is independent of the step sizes h and s.

Proof. A consistency analysis shows that

Φn+1 − Φn

s
= ∇N ·

(
Lx
(
∇NΦn+1,∇NΦn

)
Ly
(
∇NΦn+1,∇NΦn

) )+
A

2
∆N

(
Φn+1 − 2Φn + Φn−1

)
−ε2∆2

N

(
3

4
Φn+1 +

1

4
Φn−1

)
+ τn+1/2, (98)
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where the local truncation error satisfies the estimate∥∥∥τn+1/2
∥∥∥

2
≤ C

(
s2 + hm

)
. (99)

The functions Lx, Ly are given in (9) and (10). The last estimate is based on a Fourier spectral
differentiation analysis in space and Taylor expansions in the time dimension. The details are left
to interested readers.

Subtracting the numerical scheme (65) from (98), we get the equation for the numerical error
function:

en+1 − en

s
− A

2
∆N

(
en+1 − 2en + en−1

)
+ ε2∆2

N

(
3

4
en+1 +

1

4
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)
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(
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(
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)
Ly
(
∇NΦn+1,∇NΦn

)
− Ly

(
∇Nφn+1,∇Nφn

) )+ τn+1/2. (100)

Taking the discrete L2 inner product with −2∆Ne
n+1 gives∥∥∇Nen+1

∥∥2

2
− ‖∇Nen‖22 +

∥∥∇N (en+1 − en)
∥∥2

2
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〈
∆Ne
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〉
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〈

∆Ne
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3

2
en+1 +

1

2
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)〉
+ 2s

〈
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n+1
〉

= −s
〈(
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(
∇NΦn+1,∇NΦn
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(
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(
∇NΦn+1,∇NΦn

)
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(
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) ) , 2∇N∆Ne
n+1

〉
, (101)

where the summation-by-parts formulae (70) and (71) were applied. The term associated with the
truncation error can be controlled by Cauchy’s inequality:

−2
〈
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2
. (102)

The term associated with the artificial diffusion can be handled by
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The term associated with the surface diffusion can be analyzed as follows:
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For the nonlinear term, an extension of Lemma 4.1 to the space discrete case indicates that∣∣Lx (∇NΦn+1,∇NΦn
)
− Lx

(
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)∣∣
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. (106)
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Therefore, we arrive at
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Subsequently, a substitution of estimates (102) – (107) into (101) yields∥∥∇Nen+1
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Meanwhile, the following estimate for
∥∥∆Ne

k
∥∥2

2
is valid:∥∥∥∆Ne
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for all β > 0. Using the last estimate, with a careful choice of β, we obtain∥∥∇Nen+1
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Finally, if s is small enough(s < ε2

C ), summing in time and applying a discrete Gronwall inequality,
we arrive at the desired discrete L∞(0, T ;H1)∩L2(0, T ;H3) error estimate for solutions of the fully
discrete scheme (65).

Remark 4.3. A detailed consistency analysis shows that a regularity of Φ ∈ W 3,∞(0, T ;Hm) ∩
W 2,∞(0, T ;Hm+4) is needed for the exact solution Φ to make the local truncation error estimate
(99) valid at every time step. Moreover, a more careful analysis indicates that a reduced regularity
assumption Φ ∈ H3(0, T ;Hm) ∩ H2(0, T ;Hm+4) can be made for Φ, if we only need the local
truncation error estimate (99) satisfied in `2(0, T ), at the discrete time level. That could also lead
to the desired convergence analysis result as in (97).

In this paper, we made an assumption that “Φ is the exact smooth solution” in Thm. 4.2, for
simplicity of presentation.

Remark 4.4. We note that the initialization φ−1 ≡ φ0 is only first order accurate. However, this
“one-step” degradation of accuracy does not affect the overall numerical accuracy. In more detail,
we observe that, although truncation error at the first time step is only of O(s), the numerical
solution φ1 updated from the fully discrete scheme (65) is still an O(s2) approximation to Φ1,
because of its detailed expansions. In other words, we have an exact approximation φ0 and an
O(s2) approximation φ1. Subsequently, after the first time step, all the local truncation errors are
of second order accurate in time. In turn, both the theoretical analysis presented in this paper and
the numerical experiments have indicated a full second order accuracy in time.
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Figure 1: Dependence of the convergence rate of the linear iteration method on the surface diffusion
parameter ε. Here we plot the L2 norm of the error for the linear iteration versus the iteration
stage k, with time step s = 0.01 and artificial diffusion parameter A = 2.

5 Numerical Simulation Results

5.1 Convergence of the Linear Iteration Scheme

In this subsection we present some tests, the results of which support the theoretical convergence
for the proposed linear iteration algorithm (25). It is clear that the convergence rate of the linear
iteration scheme will dependent on the values of surface diffusion coefficient, ε, the artificial diffusion
coefficient, A, and time step size s, as well as others, like the value of N . We will vary ε, A, and s
and compare the convergence rates. We take the following exact profile for the phase variable:

ψ(x, y) = sin(2πx)cos(2πy) (111)

over the domain Ω = (0, 1)2. Making this the exact solution requires that we manufacture appro-
priate values for φn and F in (26). In Figs. 1, 2, 3, we plot the iteration error

∥∥ek∥∥
2

versus k, where

ek := ψk −ψ, as in Theorem 2.2. For the tests, we fix N = 64, and do not explore the convergence
rate dependence on this parameter here. Of course, (111) will not be the solution to the fully
discrete equation (67). We expect to and, in fact, do see a finite saturation of the iteration error in
Figs. 1, 2, 3. And, as expected, the saturation levels differ for different values of the parameters.
Naturally, a larger value of N will allow for smaller saturation levels in each case, but at the cost
of more computation.

For the first test, the results for which are reported in Fig. 1, we fix s = 0.01 and A = 2 and
vary ε: ε = 1, ε = 0.1 and ε = 0.01. It is clear that the linear iteration error reaches a saturation
after a few (k ≤ 8) iteration stages. From Fig. 1, we observe that the convergence rate for the linear
iteration increases with an increasing value of ε. This implies that numerical implementation of the
linear iteration algorithm (25) becomes more challenging with a smaller surface diffusion coefficient.
This result matches with our theoretical analysis in proof of Theorem 2.2. Also note, that each
iteration of the linear iteration method reduces the iteration by roughly a constant amount, which
is not surprising since we have a pure contraction of the error.
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Figure 2: Dependence of the convergence rate of the linear iteration method on the artificial
diffusion parameter A. Here we plot the L2 norm of the error for the linear iteration versus the
iteration stage k, with time step s = 0.01 and the surface diffusion coefficient ε = 0.01.

For the second test, the results for which are reported in Fig. 2, we fix s = 0.01 and ε = 0.01
and we vary A: A = 2, A = 4 and A = 8. Again, the linear iteration error reaches a saturation
after a few (≤ 8) iteration stages. Moreover, the convergence rate for the linear iteration increases
with an increasing value of A. For the third test, the results for which are reported in Fig. 3, we
fix ε = 0.01 and A = 2 and we vary s: s = 10−2, s = 10−3 and s = 10−4. The linear iteration
error reaches a saturation after a few iteration stages. The convergence rate for the linear iteration
increases with a decreasing value of s. These results likewise match with our theoretical analysis in
the proof of Theorem 2.2. As before, the iteration error is decreased by roughly the same amount
for each iteration stage.

5.2 Convergence of the Convex Splitting Scheme

In this subsection we perform a numerical accuracy check for the energy stable, fully discrete second
order scheme (65). Similar to the last example, the computational domain is set to be Ω = (0, 1)2,
and the exact profile for the phase variable is set to be

Φ(x, y, t) = sin(2πx) cos(2πy) cos(t). (112)

As with the last test, to make Φ satisfy the original PDE (4), we have to add an artificial, time-
dependent forcing term, which we do. The proposed second order scheme (65) (with Fourier spectral
differentiation in space) can be implemented to (4), with the linear iteration (25) applied to solve
the nonlinear system. We compute solutions with grid sizes N = 64 to N = 192 in increments of
16, and we solve up to time T = 1. The errors are reported at this final time. Two parameters for
the surface diffusion are used: ε = 0.5 and ε = 0.05. The time step s is determined by the linear
refinement path s = 0.5h, where h is the spatial grid size. Figs. 4 and 5 show the discrete L1,
L2 and L∞ norm s of the errors between the numerical and exact solutions. A clear second order
accuracy is observed in all cases.
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Figure 3: Dependence of the convergence rate of the linear iteration method on the time step s.
Here we plot the L2 norm of the error for the linear iteration versus the iteration stage k, with
artificial diffusion parameter A = 2 and the surface diffusion coefficient ε = 0.01.
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Figure 4: L1, L2 and L∞ numerical errors at T = 1.0 plotted versus N for the fully discrete second
order scheme (65), with the linear iteration algorithm (25) applied. The surface diffusion parameter
is taken to be ε = 0.5 and the time step size is s = 0.5h. The data lie roughly on curves CN−2, for
appropriate choices of C, confirming the full second-order accuracy of the scheme.
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Figure 5: L1, L2 and L∞ numerical errors at T = 1.0 plotted versus N for the fully discrete second
order scheme (65), with the linear iteration algorithm (25) applied. The surface diffusion parameter
is taken to be ε = 0.05 and the time step size is s = 0.5h. The data lie roughly on curves CN−2,
for appropriate choices of C, confirming the full second-order accuracy of the scheme.

5.3 Coarsening and Energy Dissipation

Typically one is interested in the how properties associated with the solutions to (4) and (6) scale
with time, where it is assumed that ε � min {Lx, Ly}. The physically interesting quantities that
may be obtained from the solutions of these equations are the surface roughness, defined as

w(t) =

√
1

|Ω|

∫
Ω

∣∣∣φ(x, t)− φ̄(t)
∣∣∣2dx , with φ̄(t) =

1

|Ω|

∫
Ω
φ(x, t)dx, (113)

the characteristic pyramid/mound size, denoted λ(t), and the energy. For the no-slope-selection
equation (4), one obtains w ∼ O

(
t1/2
)
, λ(t) ∼ O

(
t1/4
)
, and E ∼ O (− ln(t)). (See [11, 12] and

references therein.) Observe that for the no-slope-selection equation (4), the average mound height
(measured by the roughness) grows faster then the mound width (measured by λ), which is expected
because there is no preferred slope of the height function φ. Also, note that in the rigorous setting,
for example [8, 9, 12], one can only (at best) obtain lower bounds for the energy dissipation and,
conversely, upper bounds for the roughness growth. However, the rates quoted as the upper or
lower bounds are typically observed for the averaged values of the quantities of interest. Predicting
these scaling laws numerically is quite challenging, since doing so requires very long simulation
times. To adequately capture the full range of coarsening behaviors, numerical simulations for the
coarsening process require short- and long-time accuracy and stability, in addition to high spatial
accuracy for small values of ε.

Here we show a numerical simulation result using the proposed second order scheme (65) com-
bined with the linear iteration algorithm (25) for the no-slope-selection equation (4) to compare
our computed solutions against the predicted coarsening rates. This test is a repeat of those given
in our previous papers [1, 21]. The surface diffusion coefficient parameter is taken to be ε = 0.02.
For the domain we take L = Lx = Ly = 12.8 and h = L/N , where h is the uniform spatial step size.
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t = 400 t = 6000 t = 20000

t = 300000t = 80000t = 40000

Figure 6: (Color online.) Snapshots of the computed height function φ at the indicated times for
the parameters L = 12.8, ε = 0.02. Note that the color scale changes with time. The hills (red) at
early times are not as high as time at later times, and similarly with the valley (blue). To see how
the average height/depth changes with time, see Fig. 8.

For such a value of ε, our previous numerical experiments have shown that N = 512 is adequate to
resolve the small structures in the solution. For the temporal step size s, we use increasing values of
s, namely, s = 0.004 on the time interval [0, 400], s = 0.04 on the time interval [400, 6000], s = 0.16
on the time interval [6000, 105], and s = 0.32 for t > 105. Whenever a new time step size is applied,
we initiate the two-step numerical scheme by taking φ−1 = φ0, with the initial data φ0 given by
the final time output of the last time period. Both the energy stability and second order numerical
accuracy are assured by our arguments in Sections 3, 4. Figure 6 presents time snapshots of the
film height φ with ε = 0.02. Significant coarsening in the system is evident. At early times many
small hills (red) and valleys (blue) are present. At the final time, t = 300000, a one-hill-one-valley
structure emerges, and further coarsening is not possible.

The long time characteristics of the solution, especially the energy decay rate and surface
roughness growth rate, are of interest to surface scientists. Recall that, at the space-discrete level,
the energy is defined via (72). The space-continuous surface roughness is defined in (113), and
an analogous fully discrete version is also available. At the PDE level, the lower bound for the
energy decay rate is of the order of − ln(t), and the upper bound for the standard deviation growth
rate is of the order of t1/2, as established for the no-slope-selection equation (4) in Li and Liu’s
work [12]. Figures 7 and 8 present the semi-log plots for the energy versus time and log-log plots for
the roughness versus time, respectively, with the given physical parameter ε = 0.02. The detailed
scaling “exponents” are obtained using least squares fits of the computed data up to time t = 400.
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Figure 7: Semi-log plot of the temporal evolution the energy EN for ε = 0.02. The energy decreases
like − ln(t) until saturation. The dotted lines correspond to the minimum energy reached by the
numerical simulation. The red lines represent the energy plot obtained by the simulations, while the
straight lines are obtained by least squares approximations to the energy data. The least squares
fit is only taken for the linear part of the calculated data, only up to about time t = 400. The
fitted line has the form me ln(t) + be, with me = −40.68, be = −152.73.

A clear observation of the − ln(t) and t1/2 scaling laws can be made, with different coefficients
dependent upon ε, or, equivalently, the domain size, L.

Now we recall that a lower bound for the energy (1), assuming Ω = (0, L) × (0, L), which has
been derived in our earlier article [21] and polished in a more recent one [1]:

E(φ) ≥ L2

2

(
ln

(
4ε2π2

L2

)
− 4ε2π2

L2
+ 1

)
=: γ . (114)

Obviously, since the energy is bounded below it cannot keep decreasing at the rate − ln(t). This
fact manifests itself in the calculated data as the rate of decrease of the energy, for example, begins
to wildly deviate from the predicted − ln(t) curve. Sometimes the rate of decrease increases, and
sometimes it slows as the systems “feels” the periodic boundary conditions. Interestedly, regardless
of this later-time deviation from the accepted rates, the time at which the system saturates (i.e.,
the time when the energy abruptly and essentially stops decreasing) is roughly that predicted by
extending the blue lines in Fig. 7 to the predicted minimum energy (114).

Remark 5.1. In this numerical simulation, the time step sizes are taken as 4 times larger as the
ones taken in the first order linear splitting scheme presented in our earlier work [1], at different
time range. Meanwhile, the computational cost at each time step is about 3 to 5 times as that of
the first order scheme, due to the presence of linear iteration algorithm. Thus, in the final analysis,
the total computational cost is at a comparable level as that of the first order scheme.

For the long time simulation, both the first order and second order schemes have produced similar
evolutionary curves in terms of energy and the standard deviation, as presented in Figs. 7 and 8.
A more detailed calculation shows that long time asymptotic growth rate of the standard deviation

23



100 101 102 103 104 105
10−1

100

101

102

time

Figure 8: The log-log plot of the standard deviation (or roughness) of φ, denoted w(t) for ε = 0.02.
For the no slope selection model, w(t) grows like t1/2. The red lines represent the plot obtained by
the numerical simulations, while the straight lines are linear least squares approximations to the
t1/2 growth. The least squares fit is only taken for the linear part of the calculated data, only up
to about time t = 400. The (blue) fitting line has the form brt

mr , with br = 0.40, mr = 0.51.

given by the second order numerical simulation is closer to t1/2 than that by the first order scheme.
Here we found mr = 0.51, as in recorded in Fig. 8, while in [1] this exponent was found to be
mr = 0.52. This gives more evidence that the second order scheme is able to produce more accurate
long time numerical simulation results than the first order schemes, even if its time step size is 4
times larger than the later (so that they have comparable computational costs).

6 Summary and Remarks

In this paper we have presented a linear iteration algorithm to implement an unconditionally energy
stable second-order convex splitting scheme for thin film epitaxy without slope selection, i.e, the
no-slope-selection equation (4). The second order convex splitting was given by a recent article [18].
Here an O(s2) artificial diffusion term, a Douglas-Dupont-type regularization, is added to assure a
contraction mapping property of our proposed linear iteration. The addition of this regularization
does not affect the unconditional unique solvability and unconditional energy stability of the scheme.
Moreover, a global in time H2 bound for the numerical solution is obtained at the discrete level
and the convergence for the numerical scheme in a discrete L∞(0, T ;H1) ∩ L2(0, T ;H3) norm is
proved. This convergence if made possible by the available bounds of the nonlinear terms involved
in the numerical scheme.

The work here demonstrates an important tool to implement a highly nonlinear scheme, namely
a linear iteration. We envision that this technique will have more applications in many other
nonlinear convex splitting schemes for gradient equations. Here, the nonlinear system can be
decomposed as an iteration of purely linear solvers, which can be very efficiently implemented with
the help of FFT in a collocation Fourier spectral setting. The numerical simulation experiments

24



showed that the second order scheme, combined with the linear iteration algorithm, is able to
produce a more accurate long time numerical results than the first order schemes reported in [1, 21],
with a comparable computational cost. This is remarkable when one notes that the scheme in [1]
is linear.
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