Skip to main content
Log in

A Parallel Subgrid Stabilized Finite Element Method Based on Two-Grid Discretization for Simulation of 2D/3D Steady Incompressible Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Based on domain decomposition and two-grid discretization, a parallel subgrid stabilized finite element method for simulation of 2D/3D steady convection dominated incompressible flows is proposed and analyzed. In this method, a subgrid stabilized nonlinear Navier–Stokes problem is first solved on a coarse grid where the stabilization term is based on an elliptic projection defined on the same coarse grid, and then corrections are calculated in overlapped fine grid subdomains by solving a linearized problem. By the technical tool of local a priori estimate for finite element solution, error bounds of the approximate solution are estimated. Algorithmic parameter scalings of the method are derived. Numerical results are also given to demonstrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Behara, S., Mittal, S.: Parallel finite element computation of incompressible flows. Parallel Comput. 35, 195–212 (2009)

    Article  MathSciNet  Google Scholar 

  2. Elman, H., Howle, V.E., Shadid, J., et al.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations. J. Comput. Phys. 227, 1790–1808 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Shang, Y.Q., He, Y.N.: Parallel iterative finite element algorithms based on full domain partition for the stationary Navier–Stokes equations. Appl. Numer. Math. 60(7), 719–737 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Henniger, R., Obrist, D., Kleiser, L.: High-order accurate solution of the incompressible Navier–Stokes equations on massively parallel computers. J. Comput. Phys. 229, 3543–3572 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Xu, C.J., Zhou, A.H.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69, 881–909 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Xu, C.J., Zhou, A.H.: Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Adv. Comput. Math. 14, 293–327 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. He, Y.N., Xu, C.J., Zhou, A.H.: Local and parallel finite element algorithms for the Navier–Stokes problem. J. Comput. Math. 24(3), 227–238 (2006)

    MATH  MathSciNet  Google Scholar 

  8. He, Y.N., Mei, L.Q., Shang, Y.Q.: Newton iterative parallel finite element algorithm for the steady Navier–Stokes equations. J. Sci. Comput. 44(1), 92–106 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shang, Y.Q.: A parallel two-level linearization method for incompressible flow problems. Appl. Math. Lett. 24, 364–369 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shang, Y.Q., He, Y.N., Luo, Z.D.: A comparison of three kinds of local and parallel finite element algorithms based on two-grid discretizations for the stationary Navier–Stokes equations. Comput. Fluids 40, 249–257 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Shang, Y.Q., He, Y.N.: A parallel Oseen-linearized algorithm for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 209–212, 172–183 (2012)

    Article  MathSciNet  Google Scholar 

  12. Ma, Y.C., Zhang, Z.M., Ren, C.F.: Local and parallel finite element algorithms based on two-grid discretization for the stream function form of Navier–Stokes equations. Appl. Math. Comput. 175, 786–813 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ma, F.Y., Ma, C.Y., Wo, W.F.: Local and parallel finite element algorithms based on two-grid discretization for steady Navier–Stokes equations. Appl. Math. Mech. 28(1), 27–35 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shang, Y.Q., He, Y.N., Kim, D.W., Zhou, X.J.: A new parallel finite element algorithm for the stationary Navier–Stokes equations. Finite Elem. Anal. Des. 47, 1262–1279 (2011)

    Article  MathSciNet  Google Scholar 

  15. Erturk, E., Corke, T., Gokcol, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48, 747–774 (2005)

    Article  MATH  Google Scholar 

  16. Layton, W., Lee, H., Peterson, J.: A defect-correction method for the incompressible Navier–Stokes equations. Appl. Math. Comput. 129, 1–19 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang, Y., He, Y.N.: Assessment of subgrid-scale models for the incompressible Navier–Stokes equations. J. Comput. Appl. Math. 234, 593–604 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shang, Y.Q.: A two-level subgrid stabilized Oseen iterative method for the steady Navier–Stokes equations. J. Comput. Phys. 233, 210–226 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shang, Y.Q.: A parallel subgrid stabilized finite element method based on fully overlapping domain decomposition for the Navier–Stokes equations. J. Math. Anal. Appl. 403, 667–679 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  21. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

  22. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  23. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem I: regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  24. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

  25. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  26. Nitsche, J., Schatz, A.H.: Interior estimates for Ritz–Galerkin methods. Math. Comput. 28, 937–955 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schatz, A.H., Wahlbin, L.B.: Interior maximum-norm estimates for finite element methods. Math. Comput. 31, 414–442 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schatz, A.H., Wahlbin, L.B.: Interior maximum-norm estimates for finite element methods, part II. Math. Comput. 64, 907–928 (1995)

    MATH  MathSciNet  Google Scholar 

  29. Arnold, D.N., Liu, X.: Local error estimates for finite element discretizations of the Stokes equations. RAIRO M2AN 29, 367–389 (1995)

    MATH  MathSciNet  Google Scholar 

  30. Fortin, M.: Calcul numérique des ecoulements fluides de Bingham et des fluides Newtoniens incompressible par des méthodes d’eléments finis. Doctoral thesis, Université de Paris VI (1972)

  31. Hood, P., Taylor, C.: A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1, 73–100 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  32. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numer. 7(R–3), 33–76 (1973)

    MathSciNet  Google Scholar 

  33. Mansfield, L.: Finite element subspaces with optimal rates of convergence for stationary Stokes problem. RAIRO Anal. Numer. 16, 49–66 (1982)

    MATH  MathSciNet  Google Scholar 

  34. Layton, W.: A connection between subgrid-scale eddy viscosity and mixed methods. Appl. Math. Comput. 133(1), 147–157 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kaya, S., Layton, W., Riviere, B.: Subgrid stabilized defect correction methods for the Navier–Stokes equations. SIAM J. Numer. Anal. 44, 1639–1654 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Guermond, J.L., Marra, A., Quartapelle, L.: Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers. Comput. Methods Appl. Mech. Eng. 195, 5857–5876 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hughes, T., Mazzei, L., Jansen, K.: Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3, 47–59 (2000)

    Article  MATH  Google Scholar 

  38. John, V., Kaya, S.: A finite element variational multiscale method for the Navier–Stokes equations. SIAM J. Sci. Comput. 26, 1485–1503 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kaya, S., Rivire, B.: A two-grid stabilization method for solving the steady-state Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 22, 728–743 (2005)

    Article  Google Scholar 

  40. Shang, Y.Q.: A parallel two-level finite element variational multiscale method for the Navier–Stokes equations. Nonlinear Anal. 84, 103–116 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  41. John, V., Kindl, A.: Numerical studies of finite element variational multiscale methods for turbulent flow simulations. Comput. Methods Appl. Mech. Eng. 199, 841–852 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Hecht, F., Pironneau, O., Ohtsuka, K.: FreeFem++, Version 3.9-2. http://www.freefem.org. Accessed 08 Dec 2010

  43. He, Y.N., Li, J.: Convergence of three iterative methods based on finite element discretization for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 1351–1359 (2009)

    Article  MATH  Google Scholar 

  44. Layton, W.: A two level discretization method for the Navier–Stokes equations. Comput. Math. Appl. 5(26), 33–38 (1993)

    Article  MathSciNet  Google Scholar 

  45. Ghia, U., Ghia, K., Shin, C.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 11361016), the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Scientific Research Foundation of Southwest University, Fundamental Research Funds for the Central Universities (No. SWU113095), and the Science and Technology Foundation of Guizhou Province, China (No. [2013]2212). The authors appreciate the valuable comments and suggestions made by the reviewer which led to an improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqiang Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, Y., Huang, S. A Parallel Subgrid Stabilized Finite Element Method Based on Two-Grid Discretization for Simulation of 2D/3D Steady Incompressible Flows. J Sci Comput 60, 564–583 (2014). https://doi.org/10.1007/s10915-013-9806-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9806-9

Keywords

Navigation