Skip to main content
Log in

Separation of Variables for Function Generated High-Order Tensors

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This article presents a generalization of the adaptive cross approximation to high-order tensors generated by the evaluation of multivariate functions using only a small portion of the original entries. The method is based on dimension trees, which are constructed by inspecting the covariance of the function in order to minimize the approximation rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Algorithm used: tucker_als, 2010.

  2. Algorithm used: dmrg_cross, Version 2.2, 2012, http://spring.inm.ras.ru/osel/.

References

  1. Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans. Math. Softw. 32, 635–653 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ballani, J., Grasedyck, L., Kluge, M.: Black box approximation of tensors in hierarchical tucker format. Linear Algebra Appl. 438, 639–657 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bebendorf, M.: Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, volume 63 of Lecture Notes in Computational Science and Engineering (LNCSE). Springer, Berlin (2008). ISBN 978-3-540-77146-3

  4. Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86, 565–589 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bebendorf, M.: Adaptive cross approximation of multivariate functions. Constr. Approx. 34, 149–179 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bebendorf, M., Kühnemund, A., Rjasanow, S.: A symmetric generalization of adaptive cross approximation for higher-order tensors. APNUM 74, 1–16 (2013)

    MATH  Google Scholar 

  7. Braess, D., Hackbusch, W.: On the efficient computation of high-dimensional integrals and the approximation by exponential sums. In: Multiscale, Nonlinear and Adaptive Approximation, pp. 39–74. Springer, Berlin 2009. ISBN 978-3-642-03412-1

  8. Braess, D., Hackbusch, W.: Approximation of \(1/x\) by exponential sums in \([1,\infty )\). J. Numer. Anal. 25, 685–697 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  10. Carroll, J.D., Chang, J.-J.: Analysis of individual differences in multidimensional scaling via an N-Way generalization of ”Eckart-Young“ decomposition. Psychometrika 35, 283–319 (1970)

    Article  MATH  Google Scholar 

  11. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)

    Article  MATH  Google Scholar 

  12. Espig, M.: Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen Dimensionen. PhD thesis, Universität Leipzig (2007)

  13. Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.: A theory of pseudoskeleton approximations. Linear Algebra Appl. 261, 1–21 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goreinov, S.A., Tyrtyshnikov, E.E.: The maximal-volume concept in approximation by low-rank matrices. Contemp. Math. 280, 47–51 (2001)

    Article  MathSciNet  Google Scholar 

  15. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31(4), 2029–2054 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15, 706–722 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  18. Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an ”Explanatory“ multimodal factor analysis. UCLA Work. Pap. Phonetics 16, 1–84 (1970)

    Google Scholar 

  19. Kapteyn, A., Neudecker, H., Wansbeek, T.: An approach to N-mode components analysis. Psychometrika 51, 269–275 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Technol. J. 49, 291–307 (1970)

    Article  MATH  Google Scholar 

  21. Kolda, T.G.: A counterexample to the possibility of an extension of the Eckart–Young low-rank approximation theorem for the orthogonal rank tensor decomposition. SIAM J. Matrix Anal. Appl. 24, 762–767 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: On the best rank-\(1\) and rank-\((R_1, R_2, \ldots, R_N)\) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Oseledets, I.V.: Compact Matrix Form of the \(d\)-Dimensional Tensor Decomposition, pp. 09–01. Institute of Numerical Mathematics, Preprint (2009)

  25. Oseledets, I.V., Savostianov, D.V., Tyrtyshnikov, E.E.: Tucker dimensionality reduction of three-dimensional arrays in linear time. SIAM J. Matrix Anal. Appl. 30(3), 939–956 (2008)

    Article  MathSciNet  Google Scholar 

  26. Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31, 3744–3759 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Oseledets, I.V., Tyrtyshnikov, E.E.: TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 432, 70–88 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Salmi, J., Richter, A., Koivunen, V.: Sequential unfolding SVD for tensors with applications in array signal processing. IEEE Trans. Signal Process. 57(12), 4719–4733 (2009)

    Article  MathSciNet  Google Scholar 

  29. Savostyanov, D.V., Oseledets, I.V.: Fast adaptive interpolation of multi-dimensional arrays in tensor train format. In: Proceedings nDS-2011 Conference Poitiers (2011)

  30. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bebendorf.

Additional information

This work was supported by the DFG project BE2626/3-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bebendorf, M., Kuske, C. Separation of Variables for Function Generated High-Order Tensors. J Sci Comput 61, 145–165 (2014). https://doi.org/10.1007/s10915-014-9822-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9822-4

Keywords

Navigation