Skip to main content
Log in

An Efficient Lattice Boltzmann Model for Steady Convection–Diffusion Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, an efficient lattice Boltzmann model for n-dimensional steady convection–diffusion equation with variable coefficients is proposed through modifying the equilibrium distribution function properly, and the Chapman–Enskog analysis shows that the steady convection–diffusion equation with variable coefficients can be recovered exactly. Detailed simulations are performed to test the model, and the results show that the accuracy and efficiency of the present model are better than previous models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Deolmi, G., Marcuzzi, F., Morandi Cecchi, M.: The best-approximation weighted-residuals method for the steady convection–diffusion–reaction problem. Math. Comput. Simul. 82, 144–162 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brill, S., Smith, E.: Analytical upstream collocation solution of a quadratically forced steady-state convection–diffusion equation. Int. J. Numer. Method. H. 22(4), 436–457 (2012)

    Article  Google Scholar 

  3. Galligani, E.: A nonlinearity lagging for the solution of nonlinear steady state reaction diffusion problems. Int. J. Nonlinear Sci. Num. 18, 567–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Angelini, O., Brenner, K., Hilhorst, D.: A finite volume method on general meshes for a degenerate parabolic convection–reaction–diffusion equation. Numer. Math. 123, 219–257 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bause, M., Schwegler, K.: Higher order finite element approximation of systems of convection–diffusion–reaction equations with small diffusion. J. Comput. Appl. Math. 246, 52–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Codina, R.: Comparison of some finite element methods for solving the diffusion–convection–reaction equation. Comput. Method. Appl. M. 156, 185–210 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Egger, H., Schoberl, J.: A hybrid mixed discontinuous galerkin finite-element method for convection–diffusion problems. IMA. J. Numer. Anal. 30, 1206–1234 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145–197 (1992)

    Article  Google Scholar 

  9. Chen, S.Y., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  10. Qian, Y.H., Succi, S., Orszag, S.A.: Lattice BGK models for Navier–Stokes equation. Annu. Rev. Comput. Phys. 3, 195–242 (1995)

    Article  MathSciNet  Google Scholar 

  11. Wang, M., Wang, J.K., Pan, N.: Three-dimensional effect on the effective thermal conductivity of porous media. J. Phys. D. Appl. Phys. 40, 260–265 (2007)

    Article  Google Scholar 

  12. Dou, Z., Zhou, Z.F.: Numerical study of non-uniqueness of the factors influencing relative permeability in heterogeneous porous media by lattice Boltzmann method. Int. J. Heat Fluid FL. 42, 23–32 (2013)

    Article  Google Scholar 

  13. Guo, Z.L., Shi, B.C., Zheng, C.G.: Chequerboard effects on spurious currents in the lattice Boltzmann equation for two-phase flows. Phil. Trans. R. Soc. A 369, 2283–2291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dellar, P.J.: Electromagnetic waves in lattice Boltzmann magnetohydrodynamics. Europhys. Lett. 90, 50002 (2010)

    Article  Google Scholar 

  15. Chai, Z.H., Shi, B.C.: Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method. Phys. Lett. A 364, 183–188 (2007)

    Article  MATH  Google Scholar 

  16. Wang, J.K., Wang, M.R., Li, Z.X.: Lattice Poisson–Boltzmann simulations of electro-osmotic flows in microchannels. J. Colloid Interface Sci. 296, 729–736 (2006)

    Article  Google Scholar 

  17. Mendoza, M., Boghosian, B.M., Herrmann, H.J., Succi, S.: Fast lattice Boltzmann solver for relativistic hydrodynamics. Phys. Rev. Lett. 105, 014502 (2010)

    Article  Google Scholar 

  18. Hupp, D., Mendoza, M., Bouras, I., Succi, S.: Relativistic lattice Boltzmann method for quark-gluon plasma simulations. Phys. Rev. D 84, 125015 (2011)

    Article  Google Scholar 

  19. Ashrafizaadeh, M., Bakhshaei, H.: A comparison of non-Newtonian models for lattice Boltzmann blood flow simulations. Comput. Math. Appl. 58, 1045–1054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Joshi, A.S., Sun, Y.: Multiphase lattice Boltzmann method for particle suspensions. Phys. Rev. E 79, 066703 (2009)

    Article  Google Scholar 

  21. He, X.Y., Li, N.: Lattice Boltzmann simulation of electrochemical systems. Comput. Phys. Commun. 129, 158–166 (2000)

    Article  MATH  Google Scholar 

  22. Li, Q.J., Zheng, Z.S., Wang, S., Liu, J.K.: A multilevel finite difference scheme for one-dimensional Burgers equation derived from the lattice Boltzmann method. J. Appl. Math. 2012, 925920 (2012)

  23. Yermakou, V., Succi, S.: A fluctuating lattice Boltzmann scheme for the one-dimensional KPZ equation. Physica. A 391, 4557–4563 (2012)

    Article  Google Scholar 

  24. Blaak, R., Sloot, P.M.: Lattice dependence of reaction-diffusion in lattice Boltzmann modeling. Comput. Phys. Commun. 129, 256–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chai, Z.H., Shi, B.C.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32, 2050–2058 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng, H.Y., Zhang, X.Q., Peng, Y.H.: A lattice Boltzmann model for elliptic equations with variable coefficient. Appl. Math. Comput. 219, 2798–2807 (2012)

    Article  MathSciNet  Google Scholar 

  27. Shi, B.C., Guo, Z.L.: Lattice Boltzmann model for nonlinear convection–diffusion equations. Phys. Rev. E 79, 016701 (2009)

    Article  Google Scholar 

  28. Chai, Z.H., Zhao, T.S.: Lattice Boltzmann model for the convection–diffusion equation. Phys. Rev. E 87, 063309 (2013)

    Article  Google Scholar 

  29. Yoshida, H., Nagaoka, M.: Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation. J. Comput. Phys. 229, 7774–7795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. van der Sman, R.G.M., Ernst, M.H.: Convection–diffusion lattice Boltzmann scheme for irregular lattice. J. Comput. Phys. 160, 766–782 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28, 1171–1195 (2005)

    Article  Google Scholar 

  32. Xiang, X.Q., Wang, Z.H., Shi, B.C.: Modified lattice Boltzmann scheme for nonlinear convection diffusion equations. Int. J. Nonlinear Sci. Num. 17, 2415–2425 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Guo, Z.L., Zheng, C.G., Shi, B.C.: Non-equilibrium extrapolation methodfor velocity and pressure boundary conditionsin the lattice Boltzmann method. Chin. Phys. 11, 366–374 (2002)

    Article  Google Scholar 

  34. Gao, Z., Shen, Y.Q.: Analysis and application of high resolution numerical perturbation algorithm for convective–diffusion equation. Chin. Phys. Lett. 29, 104702 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr Changsheng Huang and Ms Qiuxiang Li for many helpful suggestions and discussions this work. This study is supported by the National Natural Science Foundation of China (Grant Nos. 11272132, 51006040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochang Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Chai, Z. & Shi, B. An Efficient Lattice Boltzmann Model for Steady Convection–Diffusion Equation. J Sci Comput 61, 308–326 (2014). https://doi.org/10.1007/s10915-014-9827-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9827-z

Keywords

Navigation