Skip to main content
Log in

Atmospheric Sound Propagation Over Large-Scale Irregular Terrain

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A benchmark problem on atmospheric sound propagation over irregular terrain has been solved using a stable fourth-order accurate finite difference approximation of a high-fidelity acoustic model. A comparison with the parabolic equation method and ray tracing methods is made. The results show that ray tracing methods can potentially be unreliable in the presence of irregular terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Appelö, D., Colonius, T.: A high-order super-grid-scale absorbing layer and its application to linear hyberbolic systems. J. Comput. Phys. 228, 4200–4217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bamberger, A., Engquist, B., Halpern, L., Joly, P.: Higher order paraxial wave equation approximations in heterogeneous media. SIAM J. Appl. Math. 48, 129–154 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994)

    Google Scholar 

  4. Carpenter, M.H., Nordström, J., Gottlieb., D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148, 341–365 (1999)

    Google Scholar 

  5. Collins, M.D.: A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom. J. Acoust. Soc. Am. 86(4), 1459–1464 (1989)

    Article  Google Scholar 

  6. de Boor, C.: A Practical Guide to Splines. Springer, New York (1978)

    Book  MATH  Google Scholar 

  7. Embrechts, J.J.: Broad spectrum diffusion model for room acoustics ray-tracing algorithms. J. Acoust. Soc. Am. 107(4), 2068–2081 (2000). doi:10.1121/1.428489. http://link.aip.org/link/?JAS/107/2068/1

    Google Scholar 

  8. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31, 629–651 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gustafsson, B.: The convergence rate for difference approximations to general mixed initial boundary value problems. SIAM J. Numer. Anal. 18(2), 179–190 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gustafsson, B., Kreiss, H.O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York (1995)

    MATH  Google Scholar 

  11. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I. Springer, Berlin (1993)

    MATH  Google Scholar 

  12. Hicken, J.E., Zingg, D.W.: Aerodynamic optimization algorithm with integrated geometry parameterization and mesh movement. AIAA J. 48(2), 400–413 (2010). doi:10.2514/1.44033. http://arc.aiaa.org/doi/abs/10.2514/1.44033

  13. Hornikx, M., Forsse’n, J.: Modelling of sound propagation to three-dimensional urban courtyards using the extended Fourier PSTD method. Appl. Acust. 72, 665–676 (2011)

    Article  Google Scholar 

  14. Jeltsch, R.: Multistep methods using higher derivatives and damping at infinity. Math. Comput. 31, 124–138 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jensen, F., Kuperman, W., Porter, M., Schmidt, H.: Computational Ocean Acoustics. AIP Press, New York (1994)

    Google Scholar 

  16. Kampanis, N.A.: Numerical simulation of low-frequency aeroacoustics over irregular terrain using a finite element discretization of the parabolic equation. J. Comput. Acoust. 10(01), 97–111 (2002)

    Article  Google Scholar 

  17. Kampanis, N.A.: A finite element method for the parabolic equation in aeroacoustics coupled with a nonlocal boundary condition for an inhomogeneous atmosphere. J. Comput. Acoust. 13(04), 569–584 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kampanis, N.A., Ekaterinaris, J.A.: Numerical Prediction of Far-field wind turbine noise over a terrain of moderate complexity. Syst. Anal. Model. Simul. 41, 107–121 (2001)

    MATH  Google Scholar 

  19. Karasalo, I., Sundström, A.: JEPE—a high-order PE-model for range-dependent fluid media. In: Proceedings of the 3rd European Conference on Underwater Acoustics, pp. 189–194. Heraklion, Crete, Greece (1996)

  20. Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus XXIV(3), 199–215 (1972)

    Google Scholar 

  21. Kreiss, H.O., Scherer, G.: Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations. Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press Inc (1974)

  22. Laine, S., Siltanen, S., Lokki, T., Savioja, L.: Accelerated beam tracing algorithm. Appl. Acoust. 70(1), 172–181 (2009). doi:10.1016/j.apacoust.2007.11.011. http://www.sciencedirect.com/science/article/pii/S0003682X07001910

    Google Scholar 

  23. Larsson, C.: Weather effects on outdoor sound propagation. Int. J. Acoust. Vib. 5, 33–36 (2000)

    Google Scholar 

  24. Larsson, E., Abrahamsson, L.: Helmholtz and parabolic equation solutions to a benchmark problem in ocean acoustics. J. Acoust. Soc. Am. 113, 2446–2454 (2003)

    Article  Google Scholar 

  25. Mattsson, K.: Boundary procedures for summation-by-parts operators. J. Sci. Comput. 18, 133–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mattsson, K.: Summation by parts operators for finite difference approximations of second-derivatives with variable coefficients. J. Sci. Comput. 51, 650–682 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mattsson, K., Almquist, M.: A solution to the stability issues with block norm summation by parts operators. J. Comput. Phys. 253, 418–442 (2013)

    Article  MathSciNet  Google Scholar 

  28. Mattsson, K., Ham, F., Iaccarino, G.: Stable and accurate wave propagation in discontinuous media. J. Comput. Phys. 227, 8753–8767 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mattsson, K., Ham, F., Iaccarino, G.: Stable boundary treatment for the wave equation on second-order form. J. Sci. Comput. 41, 366–383 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199(2), 503–540 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mattsson, K., Parisi, F.: Stable and accurate second-order formulation of the shifted wave equation. Commun. Comput. Phys. 7, 103–137 (2010)

    MathSciNet  Google Scholar 

  32. Mattsson, K., Svärd, M., Carpenter, M., Nordström, J.: High-order accurate computations for unsteady aerodynamics. Comput. Fluids 36, 636–649 (2006)

    Article  Google Scholar 

  33. Mattsson, K., Svärd, M., Shoeybi, M.: Stable and accurate schemes for the compressible Navier–Stokes equations. J. Comput. Phys. 227(4), 2293–2316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nord 2000. comprehensive outdoor sound propagation model. part 2: Propagation in an atmosphere with refraction. Technical Report 1851/00, Nordic Noise Group & Nordic Road Administration (2006)

  35. Parakkal, S., Gilbert, K., Xiao, D., Bass, H.: A generalized polar coordinate method for sound propagation over large-scale irregular terrain. J. Acoust. Soc. Am. 128(5), 2573–2580 (2010)

    Article  Google Scholar 

  36. Renterghem, T.V., Botteldooren, D.: Prediction-step staggered-in-time FDTD: an efficient numerical scheme to solve the linearised equations of fluid dynamics in outdoor sound propagation. Appl. Acust. 68, 201–216 (2007)

    Article  Google Scholar 

  37. Senne, J., Song, A., Badiey, M., Smith, K.B.: Parabolic equation modeling of high frequency acoustic transmission with an evolving sea surface. J. Acoust. Soc. Am 132(3), 1311–1318 (2012). doi:10.1121/1.4742720. http://www.ncbi.nlm.nih.gov/pubmed/22978859

    Google Scholar 

  38. Sundström, A.: Energy-Conserving Parabolic Wave Equations. FOA Report C20895–2.7. National Defence Research Establishment, Stockholm (1992)

  39. Svärd, M.: On coordinate transformation for summation-by-parts operators. J. Sci. Comput. 20(1), 29–42 (2004)

    Google Scholar 

  40. Svärd, M., Nordström, J.: On the order of accuracy for difference approximations of initial-boundary value problems. J. Comput. Phys. 218, 333–352 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. “Wavetools”. http://www.it.uu.se/research/scicomp/software/wavetools/acoustics/parakkal

  42. Weinberg, H., Burridge, R.: Horizontal ray theory for ocean acoustics. J. Acoust. Soc. Am. 55(1), 63–79 (1974). doi:10.1121/1.1919476. http://link.aip.org/link/?JAS/55/63/1

  43. Yang, C.F., Wu, B.C., Ko, C.J.: A ray-tracing method for modeling indoor wave propagation and penetration. IEEE Trans. Antennas Propag. 46(6), 907–919 (1998)

    Article  Google Scholar 

  44. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Almquist.

Appendix: Finite Difference Operators

Appendix: Finite Difference Operators

For completeness we present the fourth order SBP operators. Here \(h\) denotes the grid-spacing. The interior stencils (in \(D_1\) and \(M^{(b)}\)) are the standard central 4th order accurate finite difference stencils. At the boundaries we use one-sided stencils that are formally second order accurate. The discrete norm \(H\) is defined:

The first derivative SBP operator is given by,

The third-order accurate boundary derivative operator \(S_0\) is given by,

$$\begin{aligned} S_0=\frac{1}{h}\begin{bmatrix} {\frac{11}{6}}&-3&\frac{3}{2}&-\frac{1}{3}&0&0&\ldots \\ \end{bmatrix} \end{aligned}$$

The interior stencil of \(-h\,M^{(b)}\) at row \(i\) is given by \((i=7\ldots N-6)\):

$$\begin{aligned} m_{i,\,i-2}&= \frac{1}{6}\, b_{i-1}-\frac{1}{8}\, b_{i-2}-\frac{1}{8}\, b_{i}\\ m_{i,\,i-1}&= \frac{1}{6}\, b_{i-2}+\frac{1}{6}\, b_{i+1}+\frac{1}{2}\, b_{i-1}+\frac{1}{2}\, b_{i}\\ m_{i,\,i}&= -\frac{1}{24}\, b_{i-2}-\frac{5}{6}\, b_{i-1}-\frac{5}{6}\, b_{i+1}-\frac{1}{24}\, b_{i+2}-\frac{3}{4}\, b_{i}\\ m_{i,\,i+1}&= \frac{1}{6}\, b_{i-1}+\frac{1}{6}\, b_{i+2}+\frac{1}{2}\, b_{i}+\frac{1}{2}\, b_{i+1}\\ m_{i,\,i+2}&= \frac{1}{6}\, b_{i+1}-\frac{1}{8}\, b_{i}-\frac{1}{8}\, b_{i+2}. \end{aligned}$$

The left boundary closure of \(-h\,M^{(b)}\) (given by a \(6\times 6\) matrix) is given by

$$\begin{aligned} m_{1,\, 1}&= {\frac{12}{17}}\, b_1+{\frac{59}{192}}\, b_2+{\frac{27010400129}{345067064608}}\,b_3+{\frac{69462376031}{2070402387648}}\,b_4\\ m_{1,\, 2}&= -{\frac{59}{68}}\, b_1-{\frac{6025413881}{21126554976}}\, b_3-{\frac{537416663}{7042184992}}\, b_4\\ m_{1,\, 3}&= \frac{2}{17}\, b_1-{\frac{59}{192}}\, b_2+{\frac{213318005}{16049630912}}\, b_4+{\frac{2083938599}{8024815456}}\, b_3\\ m_{1,\, 4}&= {\frac{3}{68}}\, b_1-{\frac{1244724001}{21126554976}}\, b_3+{\frac{752806667}{21126554976}}\, b_4\\ m_{1,\, 5}&= {\frac{49579087}{10149031312}}\, b_3-{\frac{49579087}{10149031312}}\, b_4\\ m_{1,\, 6}&= -{\frac{1}{784}}\, b_4+{\frac{1}{784}}\, b_3\\ m_{2,\, 2}&= {\frac{3481}{3264}}\, b_1+{\frac{9258282831623875}{7669235228057664}}\, b_3+{\frac{236024329996203}{1278205871342944}}\, b_4\\ m_{2,\, 3}&= -{\frac{59}{408}}\, b_1-{\frac{29294615794607}{29725717938208}}\, b_3-{\frac{2944673881023}{29725717938208}}\, b_4\\ m_{2,\, 4}&= -{\frac{59}{1088}}\, b_1+{\frac{260297319232891}{2556411742685888}}\, b_3-{\frac{60834186813841}{1278205871342944}}\, b_4\\ m_{2,\, 5}&= -{\frac{1328188692663}{37594290333616}}\, b_3+{\frac{1328188692663}{37594290333616}}\, b_4\\ m_{2,\, 6}&= -{\frac{8673}{2904112}}\, b_3+{\frac{8673}{2904112}}\, b_4\\ m_{3,\, 3}&= {\frac{1}{51}}\, b_1+{\frac{59}{192}}\, b_2+{\frac{13777050223300597}{26218083221499456}}\, b_4+{\frac{564461}{13384296}}\, b_5\\&\quad +{\frac{378288882302546512209}{270764341349677687456}}\, b_3\\ m_{3,\, 4}&= {\frac{1}{136}}\, b_1-{\frac{125059}{743572}}\, b_5-{\frac{4836340090442187227}{5525802884687299744}}\, b_3-{\frac{17220493277981}{89177153814624}}\, b_4\\ m_{3,\, 5}&= -{\frac{10532412077335}{42840005263888}}\, b_4+{\frac{1613976761032884305}{7963657098519931984}}\, b_3+{\frac{564461}{4461432}}\, b_5\\ m_{3,\, 6}&= -{\frac{960119}{1280713392}}\, b_4-{\frac{3391}{6692148}}\, b_5+{\frac{33235054191}{26452850508784}}\, b_3\\ m_{4,\, 4}&= {\frac{3}{1088}}\, b_1+{\frac{507284006600757858213}{475219048083107777984}}\, b_3+{\frac{1869103}{2230716}}\, b_5+\frac{1}{24}\, b_6\\&\quad +{\frac{1950062198436997}{3834617614028832}}\, b_4\\ m_{4,\, 5}&= -{\frac{4959271814984644613}{20965546238960637264}}\, b_3-\frac{1}{6}\, b_6-{\frac{15998714909649}{37594290333616}}\, b_4-{\frac{375177}{743572}}\, b_5\\ m_{4,\, 6}&= -{\frac{368395}{2230716}}\, b_5+{\frac{752806667}{539854092016}}\, b_3+{\frac{1063649}{8712336}}\, b_4+\frac{1}{8}\, b_6\\ m_{5,\, 5} \!&= \! {\frac{8386761355510099813}{128413970713633903242}}\, b_3\!+\!{\frac{2224717261773437}{2763180339520776}}\, b_4\!+\!\frac{5}{6}\, b_6\!+\!\frac{1}{24}\, b_7\!+\!{\frac{280535}{371786}}\, b_5\\ m_{5,\, 6}&= -{\frac{35039615}{213452232}}\, b_4-\frac{1}{6}\, b_7-{\frac{13091810925}{13226425254392}}\, b_3-{\frac{1118749}{2230716}}\, b_5-\frac{1}{2}\, b_6\\ m_{6,\, 6}&= {\frac{3290636}{80044587}}\, b_4+{\frac{5580181}{6692148}}\, b_5+\frac{5}{6}\, b_7+\frac{1}{24}\, b_8+{\frac{660204843}{13226425254392}}\, b_3+\frac{3}{4}\, b_6 \end{aligned}$$

The corresponding right boundary closure is obtained by replacing \(b_{i}\rightarrow b_{N+1-i}\) for \(i=1,\ldots ,8\) followed by a permutation of both rows and columns. Let \(m_{i,j}\) be the entry at row \(i\) and column \(j\) in \(M^{(b)}\). The matrix \(M^{(b)}\) is symmetric, which means that it is completely defined by the entries on and above the main diagonal, i.e., \(m_{j,i}=m_{i,j},\,i=1,\ldots ,N, \quad j=i,\ldots ,N\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almquist, M., Karasalo, I. & Mattsson, K. Atmospheric Sound Propagation Over Large-Scale Irregular Terrain. J Sci Comput 61, 369–397 (2014). https://doi.org/10.1007/s10915-014-9830-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9830-4

Keywords

Navigation