Skip to main content
Log in

A Semi-Lagrangian Method for 3-D Fokker Planck Equations for Stochastic Dynamical Systems on the Sphere

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider stochastic dynamical systems on the sphere and the associated Fokker–Planck equations. A semi-Lagrangian method combined with a Finite Volume discretization of the sphere is presented to solve the Fokker–Planck equation. The method is applied to a typical problem in fiber dynamics and textile production. The numerical results are compared to explicit solutions and Monte-Carlo solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Adcroft, A., Campin, J., Hill, C., Marshall, J.: Implementation of an atmosphere–ocean general circulation model on the expanded spherical cube. Mon. Wea. Rev. 132, 2845–2863 (2004)

    Article  Google Scholar 

  2. Bonilla, L., Götz, T., Klar, A., Marheineke, N., Wegener, R.: Hydrodynamic limit of a Fokker–Planck equation describing fiber lay-down processes. SIAM J. Appl. Math. 68(3), 648–665 (2007)

    Article  MathSciNet  Google Scholar 

  3. Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18, 1193–1215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Degond, P., Appert-Rolland, C., Moussaid, M., Pettre, J., Theraulaz, G.: A hierarchy of heuristic-based models of crowd dynamics. http://arxiv.org/abs/1304.1927

  5. Dolbeault, J., Klar, A., Mouhot, C., Schmeiser, C.: Hypocoercivity and a Fokker–Planck equation for fiber lay-down. Appl. Math. Res. Exp. 2013(2), 165–175 (2013)

    Google Scholar 

  6. Douglas, J., Huang, C., Pereira, F.: The modified method of characteristics with adjusted advection. Numer. Math. 83, 353–369 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Douglas, J., Russell, T.F.: Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite elements or finite differences. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Götz, T., Klar, A., Marheineke, N., Wegener, R.: A stochastic model and associated Fokker–Planck equation for the fiber lay-down process in nonwoven production processes. SIAM J. Appl. Math. 67(6), 1704–1717 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grothaus, M., Klar, A.: Ergodicity and rate of convergence for a non-sectorial fiber lay-down process. SIAM J. Math. Anal. 40(3), 968–983 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grothaus, M., Klar, A., Maringer, J., Stilgenbauer, P.: Geometry, mixing, properties and hypocoercivity of a degenerate diffusion arising in technical textile industry. http://arxiv.org/abs/1203.4502

  11. Kageyama, A., Sato, T.: Yin-Yang grid : an overset grid in spherical geometry. Geochem. Geophys. Geosyst. 5, Q09005 (2004)

    Article  Google Scholar 

  12. Klar, A., Reuterswärd, P., Seaïd, M.: A semi-Lagrangian method for a Fokker–Planck equation describing fiber dynamics. J. Sci. Comp. 38(3), 349–367 (2009)

    Article  MATH  Google Scholar 

  13. Klar, A., Marheineke, N., Wegener, R.: Hierarchy of mathematical models for production processes of technical textiles. ZAMM 89(12), 941–961 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klar, A., Maringer, J., Wegener, R.: A 3D model for fiber lay-down processes in non-woven production processes. Math. Models Methods Appl. Sci. 22, 9 (2012)

    Article  MathSciNet  Google Scholar 

  15. Kolb, M., Savov, M., Wuebker, A.: (Non)ergodicity of a degenerate diffusion modeling the fiber lay down process. SIAM J. Math. Anal. 45(1), 113 (2012)

    Google Scholar 

  16. Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  17. Oeksendahl, B.: Stochastic Differential equations. Springer, Berlin (2005)

    Google Scholar 

  18. Sadourny, R., Arakawa, A., Mintz, Y.: Integration of the nondivergent barotropic vorticity equation with an icosahedral–hexagonal grid for the sphere. Mon. Wea. Rev. 96, 351–356 (1968)

    Article  Google Scholar 

  19. Seaïd, M.: On the quasi-monotone modified method of characteristics for transport-diffusion problems with reactive sources. Comp. Methods Appl. Math. 2, 186–210 (2002)

    MATH  Google Scholar 

  20. Stroock, D.W.: On the growth of stochastic integrals. Z.Wahr. verw.Geb. 18, 340–344 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  Google Scholar 

  22. Wachspress, E.: A Rational Finite Element Basis. Academic Press, New York (1975)

    MATH  Google Scholar 

  23. Zharovsky, E., Simeon, B.: A space-time adaptive approach to orientation dynamics in particle laden flow. Procedia Comput. Sci. 1, 791–799 (2010)

    Article  Google Scholar 

  24. Zharovski, E., Moosaie, A., LeDuc, A., Manhart, M., Simeon, B.: On the numerical solution of a convection–diffusion equation for particle orientation dynamics on geodesic grids. Appl. Numer. Math. 62(10), 15541566 (2012)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by Deutsche Forschungsgemeinschaft (DFG), KL 1105/18-1 and by Bundesministerium für Bildung und Forschung (BMBF), Verbundprojekt OPAL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, A., Klar, A., Simeon, B. et al. A Semi-Lagrangian Method for 3-D Fokker Planck Equations for Stochastic Dynamical Systems on the Sphere. J Sci Comput 61, 513–532 (2014). https://doi.org/10.1007/s10915-014-9835-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9835-z

Keywords

Navigation