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Abstract Detecting edges in images from a finite sampling of Fourier data is important in
a variety of applications. For example, internal edge information can be used to identify
tissue boundaries of the brain in a magnetic resonance imaging (MRI) scan, which is an
essential part of clinical diagnosis. Likewise, it can also be used to identify targets from syn-
thetic aperture radar (SAR) data. Edge information is also critical in determining regions of
smoothness so that high resolution reconstruction algorithms, i.e. those that do not “smear
over” the internal boundaries of an image, can be applied. In some applications, such as
MRI, the sampling patterns may be designed to oversample the low frequency while more
sparsely sampling the high frequency modes. This type of non-uniform sampling creates
additional difficulties in processing the image. In particular, there is no fast reconstruction
algorithm, since the FFT is not applicable. However, interpolating such highly non-uniform
Fourier data to the uniform coefficients (so that the FFT can be employed) may introduce
large errors in the high frequency modes, which is especially problematic for edge detec-
tion. Convolutional gridding, also referred to as the non-uniform FFT (NFFT), is a forward
method that uses a convolution process to obtain uniform Fourier data so that the FFT can
be directly applied to recover the underlying image. Carefully chosen parameters ensure
that the algorithm retains accuracy in the high frequency coefficients. Similarly, the convo-
lutional gridding edge detection algorithm developed in this paper provides an efficient and
robust way to calculate edges. We demonstrate our technique in one and two dimensional
examples.
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1 Introduction

The recovery of piecewise-smooth functions from a finite number of non-equispaced Fourier
modes presents several problems. First, as in the case with uniform modes, there is the well
known Gibbs phenomenon, which not only manifests itself as unwanted oscillations near
the jump discontinuities but also reduces the overall convergence rate to first order, even
in smooth regions, [15]. These oscillations may be exacerbated if the non-uniform data are
resampled to integer locations, as the interpolation introduces additional error. Moreover,
non-uniform sampling patterns are often designed to be sparse in high frequencies, which
affects the robustness and accuracy of the interpolation in these regions, [23]. This is of
particular concern for piecewise smooth functions or functions with steep gradients, as such
features slow the decay rate of the Fourier coefficients.

The second challenge is that the use of non-uniform Fourier data precludes the imple-
mentation of an inverse fast Fourier transform (FFT), meaning that the complexity for a one
dimensional reconstruction is O(n2) instead of O(n logn) for n given Fourier samples. This
issue has been addressed in a variety of ways, depending on the application. One of the
most common approaches to improving the computational efficiency is to design a window
function that, when convolved (numerically) with the given Fourier data, allows for the ap-
proximation of the integer coefficients of a related function. The inverse FFT can then be
straightforwardly applied with a cost close to O(n logn). This method is commonly referred
to as ‘non-uniform FFT’ (NFFT), [6], or ‘convolutional gridding’, [17,19], which is the pre-
ferred term in the MRI community. Since our research is motivated by MRI, we will adopt
that term here as well.

In addition to providing a computational speed up mechanism, convolutional gridding
may also help to combat the convergence issues that are caused by trying to reconstruct a
compactly supported function from a finite interval of Fourier data. Specifically, the (con-
volving) window function is designed to be “essentially” compactly supported in both do-
mains. In so doing, we are assured a faster decay in the Fourier coefficients without intro-
ducing a large aliasing error.1 Unfortunately, since the underlying function is typically only
piecewise smooth, the Gibbs phenomenon is still present. While filtering helps to mollify the
oscillatory effects, it also necessarily causes a loss of resolution near the internal boundaries,
thereby negatively impacting clinical diagnoses (or target identification in SAR imaging).

High order reconstruction via spectral reprojection can successfully be applied to the
convolutional gridding approximation, [23], resulting in faster convergence without degra-
dation at the internal boundaries. However, in this case the edges of the function, or equiv-
alently its regions of smoothness, must be known a-priori. Edge detection is also useful in
itself as applications such as target identification and image segmentation rely heavily on
accurate information about internal boundary structures. Since edge detection from uniform
Fourier data is a well studied problem (see e.g., [13]) one option may be to first interpolate
the data to uniform modes. To do this would be computationally less efficient and may even
be less accurate, especially if large interpolation errors in the high frequency region are in-
curred. Edge detection can also be performed on the reconstructed image directly, e.g. by the

1 This is assuming that the other parameters of the method, namely the density compensation factors, are
suitably chosen, see e.g. [6,16,17,19].
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Canny edge detection method, [4]. However, as our numerical examples will demonstrate,
such low order techniques are not capable of distinguishing between smooth variation in an
image and its genuine edges.

Recovering a band-limited function f̂ from its non-uniform samples is a well studied
problem in sampling theory. In this regard, iterative techniques using compressed sensing
are becoming more prevalent, and it is indeed possible to detect edges of a piecewise smooth
function from its non-uniform Fourier data using a two stage process – by first recovering
the uniform Fourier coefficients and then using an edge detection method such as the one
described in [13]. The purpose of this paper is to establish a framework for determining
edges directly using the convolutional gridding algorithm.

Our convolutional gridding edge detection algorithm has several advantages. First, with
properly chosen parameters, interpolation errors can be largely controlled. Second, the method
is computationally efficient since the FFT can be directly employed. Third, the technique is
inherently multi-dimensional, provided that an edge can be suitably defined. Finally, convo-
lutional gridding is a widely used algorithm in many applications for which there are reliable
software packages. Since our adaptation only modifies the input data by multiplicative fac-
tors, it can be easily adopted in real applications.

The paper is organized as follows: Section 2 describes the convolutional gridding method
for one dimensional function reconstruction. Section 3 explains the adaptation of the con-
volutional gridding method to recover the edges of a piecewise smooth function. Numerical
examples in one and two dimensions are provided in Section 4, and in Section 5 we give
some concluding remarks.

2 Convolutional Gridding

Consider a compactly supported piecewise smooth function f on [−π,π]. Suppose that
Fourier data,

f̂ (ωk) =
∫

∞

−∞

f (x)e−iωkxdx =
∫

π

−π

f (x)e−iωkxdx, (1)

are collected at non-integer values ωk, k = −N, · · · ,N. In what follows we describe the
convolutional gridding method to approximate the underlying function f .

At the heart of the convolutional gridding function is an (essentially) compactly sup-
ported smooth window function φ defined on [−π,π] that is also (essentially) band limited
in the Fourier domain. The choice of φ inherently affects the amount of aliasing error in the
reconstruction and the efficiency of the calculation. A more extensive list of ideal properties
for φ will be described in Section 3.1.

Let us define the function g := f ·φ . The convolutional gridding algorithm proposes that
the integer Fourier coefficients ĝ(l), l =−N, · · · ,N, are constructed via convolution so that
the FFT can be used to compute the Fourier partial sum

SNg =
N

∑
l=−N

ĝ(l)eilx. (2)

The approximation of f is then given by SNg/φ .
We now turn our attention to the construction of ĝ(l), l = −N, · · · ,N, whose analytic

expression is given by

ĝ(l) =
∫

∞

−∞

f (x)φ(x)e−ilxdx =
∫

π

−π

f (x)φ(x)e−ilxdx. (3)
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Since f is only known at its non-uniform Fourier samples, f̂ (ωk), we make the approxima-
tion

f (x) =
∫

∞

−∞

f̂ (ω)eiωxdω ≈
N

∑
k=−N

αk f̂ (ωk)eiωkx, (4)

where the weights {αk}N
k=−N are known as density compensation factors (DCFs) in appli-

cations such as MRI. There are many strategies for choosing DCFs, see e.g. [6,16,19], and
we will discuss some of these ideas further in Section 3.1.

By substituting (4) into (3) we obtain

ĝ(l)≈
∫

π

−π

(
N

∑
k=−N

αk f̂ (ωk)eiωkx

)
φ(x)e−ilxdx =

N

∑
k=−N

αk f̂ (ωk)φ̂(l−ωk). (5)

Since φ̂ is (essentially) compactly supported by design, (5) can be truncated as

ĝ(l)≈ ∑
k s.t. |l−ωk |<q

αk f̂ (ωk)φ̂(l−ωk), (6)

where q depends directly on the decay rate of φ̂ . Replacing (5) with (6) is critical since ĝ(l)
cannot be computed by fast transform methods, and therefore the resulting calculation of
(2) is only efficient if ĝ has minimum support. Clearly, (6) suggests that the convolutional
gridding method can also be viewed as a type of interpolation procedure. Hence the DCFs
must be chosen carefully to avoid large interpolation error.

The inverse FFT is now used to construct an approximation for g from which φ is divided
out in order to yield an approximation to f . The process is summarized in Algorithm 1.

Algorithm 1 Convolutional Gridding

Given f̂ at non-uniform frequency locations ωk, k = −N, · · · ,N, for a piecewise smooth
function f on [−π,π]:

1.Choose window function φ , DCFs {αk}N
k=−N , and truncation parameter q.

2.Define a new function g = f ·φ , so that ĝ(l) =
∫

∞

−∞
f̂ (τ)φ̂(l− τ)dτ

3.Regrid Fourier data to integer locations:

ĝ(l)≈ ∑
k s.t. |l−ωk |<q

αk f̂ (ωk)φ̂(l−ωk) =: ĝcg(l)

4.Reconstruct g on an equispaced grid using a standard inverse FFT:

SNgcg(x) =
N

∑
l=−N

ĝcg(l)eilx

5.Divide out window function:

fcg(x) =
SNgcg(x)

φ(x)
(7)

end
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We note that since the window function φ approaches zero at the ends of the interval,
the result is usually “zero padded”, i.e., fcg is assumed to have zero value whenever φ is
small, so that the final step in the algorithm remains well-conditioned. This is an appropriate
assumption for applications such as MRI where any non-zero values near the boundaries are
machine artifacts.

Figure 1 shows the convolutional gridding approximation of the simple step function,

f (x) =

{
0, if |x| ≥ π

2
1, if |x|< π

2 ,
(8)

using DCFs given by (22) and window function defined in (21).

Fig. 1: Comparison of convolutional gridding reconstruction (red solid) of (8) given Fourier
data (1) with N = 32 on jittered samples, (9), with standard Fourier reconstruction given
uniform samples (blue dashed). The DCFs are given in (22), and the window function φ is
given by (21) with c = .6 and λ = 1. The truncation parameter is q = 12.
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Figure 1 demonstrates that convolutional gridding yields oscillations coming from sev-
eral sources. The Gibbs phenomenon is evident in the oscillations that increase in magnitude
near the jump discontinuities of f for both the standard Fourier reconstruction (blue dashed
line) as well as the convolutional gridding approximation (red solid line). However, the con-
volutional gridding algorithm admits additional oscillatory effects in the smooth regions.
While filtering reduces the Gibbs related oscillations, it does not alleviate those caused by
regridding, [23]. We point out that there are several methods that accurately reconstruct
functions between the jump discontinuities without first interpolating the Fourier data. In-
terested readers should see [1,10] for the descriptions of two such methods. However, all
high resolution methods require the edges of f to be known a-priori.

2.1 Sampling Schemes

Before describing the convolutional gridding approach for edge detection, we first introduce
two examples of non-uniform sampling schemes that are representative in applications. They
are depicted in Figure 2.

1. Jittered Sampling:
ωk = k±U (0,θ), k =−N, . . . ,N, (9)
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where U denotes a uniform distribution over the interval indicated. The jitter at ev-
ery node k is independently determined and may therefore be positive or negative. In
our experiments we set θ = 1

4 as the maximal jitter magnitude so that the sequence,
ωk,k ∈Z , forms a Riesz basis for L2[−π,π] (satisfying Kadec’s 1/4 formula), [5]. Jit-
tered sampling mimics the situation when a machine fails to sample at the exact integer
locations.

2. Logarithmic Sampling: In this case the measurements are oversampled in the low fre-
quencies and become increasingly sparse in the high frequencies. We let ω0 = 0 and the
remaining ω1, . . . ,ωN are distributed logarithmically between some lower bound a > 0
and a maximum frequency T . One dimensional logarithmic sampling is analogous to
the various two dimensional spiral schemes that are prescribed as sampling trajectories
in some MRI machines (see Figure 12).

Fig. 2: Depiction of the various sampling patterns

3 Convolutional Gridding for Edge Detection

Suppose now that f has a single jump discontinuity at the point ξ ∈ (−π,π). We define the
jump function of f as

[ f ](x) = f (x+)− f (x−), (10)

which takes on the value [ f ](ξ ) at x = ξ and 0 elsewhere. An equivalent formulation which
is more convenient for our purposes is given by

[ f ](x) = [ f ](ξ )Iξ (x), (11)

where the indicator function Iξ (x) has value 1 at x = ξ and 0 everywhere else. It is straight-
forward to expand (11) for multiple jumps.
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We must first regularize Iξ (x) as it is nontrivial only at a single point, so therefore not
feasibly represented by a partial Fourier sum. For example, we define

Hξ (x) = e−
(x−ξ )2

2σ2 , (12)

which converges to Iξ (x) as σ2→ 0. We use (12) to approximate (11) as

f̃ (x) := [ f ](ξ )Hξ (x)≈ [ f ](x). (13)

Note that f̃ (x) is a smooth function. The first term approximation of the Fourier transform
of Hξ (x) at ωk is given by [9]

Ĥξ (ωk)≈ σe−iωkξ e−
1
2 σ2ω2

k

√
π

2
. (14)

As long as the discontinuity is not too close to the ends of the domain, that is |π − ξ | > δ

for small δ > 0, the remaining Fourier transform terms are of higher order and may be
discarded. Combining (13) and (14) we see that

̂̃f (ωk) ≈ ̂[ f ](ξ )Hξ (ωk)

= [ f ](ξ )Ĥξ (ωk)

≈ [ f ](ξ )σe−iωkξ e−
1
2 σ2ω2

k

√
π

2
. (15)

We also need a relationship between the jump function [ f ] and the given Fourier data. This
is accomplished using integration by parts as

f̂ (ωk) =
∫

π

−π

f (x)e−iωkx dx

=
∫

ξ−

−π

f (x)e−iωkx dx+
∫

π

ξ+
f (x)e−iωkx dx

=
f (x)e−iωkx

−iωk

∣∣∣∣
ξ−

−π

+
f (x)e−iωkx

−iωk

∣∣∣∣
π

ξ+

−
∫

π

−π

f ′(x)
e−iωkx

−iωk
dx

≈ f (ξ−)e−ωkξ

−iωk
− f (ξ+)e−iωkξ

−iωk
+O

(
1

ω2
k

)

≈ [ f ](ξ )e−iωkξ

iωk
, (16)

yielding
[ f ](ξ )≈ f̂ (ωk)iωkeiωkξ . (17)

Finally, by substituting (17) into (15) we obtain an expression for the Fourier coefficients of
the approximation of the jump function in (13) as

̂̃f (ωk)≈ f̂ (ωk)iωkσe−
1
2 σ2ω2

k

√
π

2
= iτ̂(ωk) f̂ (ωk) . (18)

Figure 3 displays the resulting “filter” τ̂(ω). Note that both the low and high frequency
coefficients are consequently damped.



8 Adam Martinez et al.

Fig. 3: Edge detection filter in Fourier space
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For multiple jumps, ξ j, j = 1, · · · ,M, (11) is simply expanded as

[ f ](x) =
M

∑
j=1

[ f ](ξ j)Iξ j (x)≈
M

∑
j=1

[ f ](ξ j)Hξ j (x) =: f̃ (x), (19)

and a similar derivation yields the same expression for (18). There is additional error, how-
ever, since the derivative term in (16) is now aggregated to include the total number of jumps.
Also, when edges are in close proximity, the global nature of the Fourier coefficients will
lead to interfering oscillations propagating from each jump discontinuity.

From here we may directly implement the convolutional gridding edge detection method
by employing Algorithm 1. Specifically, f is replaced with the jump function approxima-
tion, f̃ in (19), with the corresponding Fourier data ̂̃f (ωk) computed using (18). We can
summarize the above process with the following algorithm:
Algorithm 2 Convolutional Gridding Edge Detection

Given f̂ at non-uniform frequency locations ωk, k = −N, · · · ,N, for a piecewise smooth
function f on [−π,π]:

1.Choose window function φ , DCFs {αk}N
k=−N , and truncation parameter q.

2.Define a new function g̃ = f̃ · φ , so that ̂̃g(l) = ∫
∞

−∞

̂̃f (τ)φ̂(l− τ)dτ , where f̃ is the
approximation of the jump function [ f ].

3.Choose parameter σ for the regularized indicator function (12) and calculate ̂̃f (ωk)
from (18).

4.Regrid ̂̃f to integer locations:

̂̃g(l)≈ ∑
k s.t. |l−ωk |<q

αk
̂̃f (ωk)φ̂(l−ωk) =: ̂̃gcg(l) (20)

5.Reconstruct g̃cg on an equispaced grid using a standard inverse FFT:

SN g̃cg(x) =
N

∑
l=−N

̂̃gcg(l)e
ilx
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6.Divide out window function:

f̃cg(x) =
SN g̃cg(x)

φ(x)

Note that if we choose φ ≈ 1 except near the boundaries, we eliminate the need for the
final deapodization step.

end

3.1 Parameter Selection for Convolutional Gridding Edge Detection

We now describe how the parameters of the convolutional gridding edge detection method
should be chosen.
The window function φ : The window function for convolutional gridding edge detection
should satisfy the following properties (the first three also apply to standard function recon-
struction, [19]):

1. To minimize the computational cost while maintaining high accuracy, φ̂(ω) should be
“essentially” compactly supported. This will ensure that each ˆ̃gcg(l) in (20) can be com-
puted with minimal number of operations.

2. φ(x) should be nonzero in the reconstruction interval, since the final approximation is
given by f = g/φ . However, we can assume that the underlying function f is “zero
padded” and therefore there are no discontinuities near the boundaries. This is a reason-
able assumption in applications such as MRI in which we are primarily concerned with
depiction of spatially compact body parts.

3. Since we are reconstructing a periodic extension of g, any non-zero values outside the
domain of interest will be aliased back into the approximation. We can reduce the impact
of aliasing by choosing φ to be zero outside the domain of interest.

4. Since [ f ](x) and consequently [g](x) is sparse, the numerical division by φ is particu-
larly susceptible to round-off error when φ is small. We can reduce this susceptibility by
requiring φ ≈ 1 except near the boundaries, which eliminates the need to perform divi-
sion, i.e. the final step in Algorithm 2. Consequently we cannot recover edges that occur
near the ends of the domain. As noted previously, this does not have negative implica-
tions in applications such as MRI as nonzero values near the boundaries are considered
to be machine artifacts.

One function that satisfies these conditions is

φ(x) = e−cx2λ

, c,λ > 0 (21)

When c is very small, φ is sometimes called a “super-Gaussian.” It was used effectively
in [14,20] as a robust inner product weight for spectral reprojection. Unfortunately, there is
no explicit formula for φ̂(ω). Numerical implementation in one dimension is accurate and
straight forward, but for our two dimensional examples we use the Kaiser Bessel window,
[6,19], which is part of the two dimensional NUFFT software package developed by Fessler
et al.2

2 web.eecs.umich.edu/~fessler/code/.

web.eecs.umich.edu/~fessler/code/
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Fig. 4: Window function and corresponding Fourier transform with c = 10−12 and λ = 13

Figure 4 shows several super-Gaussian window functions and depicts the Fourier trans-
form with c = 10−12 and λ = 13. The transform is essentially compactly supported in
[−15,15], which allows us to truncate the approximation of the convolution integral to in-
clude values only within this window.
Density Compensation Factors (DCFs): One way to choose the density compensation
factors αk is to interpret the approximation to (5) as numerical quadrature. For example,

αk =
1
2
(ωk+1−ωk−1), for k =−N +1, ...,N−1,

α−N = ω−N+1−ω−N ,

αN = ωN −ωN−1. (22)

are the trapezoidal rule quadrature weights.

Remark 1 For sampling patterns that collect data more sparsely for increasing N, choosing
the DCFs as quadrature weights will not yield a pointwise converging approximation to the
regridded coefficients, either for function reconstruction or edge detection. This is due to
the fact that the resolution of the samples does not increase with N. Nevertheless, the error
in the regridded coefficients may be somewhat mitigated by the choice of window function
φ and even the regularized indicator function H. We include the trapezoidal DCFs in our
numerical examples to demonstrate the robustness of our edge detection method. Better
DCFs and window functions for edge detection will be studied in future work.

Remark 2 There are several implications associated with how the window function φ is
selected.

1. As stated above, if the function is presumed to be zero near the boundaries (zero-
padded), then choosing φ = 1 except near the boundaries eliminates the need for the
final deapodization step, and reduces the susceptibility of the approximation to round-
off error. Consequently we must also assume that there are no edges near the boundary
(which is consistent with zero padding).
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2. Determining edges from the regridded ˆ̃g(l) should be easily accomplished using stan-
dard Fourier based edge detection methods such as in [13].3 However, this requires
extra processing, which is costly in two dimensions.

3. There does not appear to be a closed form representation of φ̂ for a smooth φ ≈ 1
throughout the interior of the domain. Because of this, in two dimensions we use the
Kaiser Bessel window for φ . Although not close to 1 throughout the interior of the do-
main, the Kaiser Bessel window has the advantage of having explicitly known Fourier
coefficients, which accounts for its widespread use in commercial software packages.
There are two main consequences, however. First, when a Kaiser Bessel window is
used, the resulting ˆ̃g is either not as accurate, since the corresponding decay rate of
φ̂ is slower, or is more expensive to compute, since more terms are required in (20).
Second, deapodization must now be performed in the final step of the process, causing
additional round-off error. If conventional codes are to be used, deapodization must be
done prior to any additional processing to recover edges, meaning that it is impossible
to separate ˆ̃g from the recovered image. Since our convolutional gridding edge detec-
tion only modifies the input data via (18), we are able to complete all of our processing
before deapodization.

Having chosen a window function and DCF technique, we now illustrate the use of
Algorithm 2 on the sawtooth function given by

f (x) =

{
−π−x

2π
, if x≤ 0

π−x
2π

, if x > 0.
(23)

Figure 5(a) demonstrates that the DCFs generated by (22) may be adequate for recovering
the regridded Fourier coefficients for the regularized jump function, (19), as long as σ is
not too small, i.e. when the regularized indicator function is more “blurred”. This is also
suggested by Figure 5(b), which displays the corresponding decay rate of ˆ̃gcg. As will be
discussed further in Section 4, the analogous DCFs for the two dimensional case may yield
too large of an error in the high frequency coefficients to produce any meaningful results.

Iterative methods are now often used to determine the DCFs in the convolutional grid-
ding algorithm, as it has been demonstrated that the resulting approximation has less inter-
polation error, [16,19]. Because of that, they are also more effective for our convolutional
gridding edge detection, especially in two dimensions. Figures 6 and 7 compare the iterative
and trapezoidal rule DCFs for the jittered and logarithmic sampling patterns, respectively.

As expected, the trapezoidal rule DCFs increase in value as the density of points de-
creases in the log sampling distribution. (The small jump at the origin in Figure 7(a) occurs
since the distribution starts at a set distance from the origin.) Iterative DCFs, on the other
hand, have a more even distribution, which is consistent with the linear least squares prob-
lem solved to obtain them. In the case of jittered sampling, the difference is less discernible,
as the density between the points is basically uniform throughout the domain. A band lim-
ited matrix of DCFs was designed in [11] for one dimensional convolutional gridding. While
numerical convergence to the underlying function is dramatically improved in the one di-
mensional case, the corresponding two dimensional DCFs have yet to be constructed. Hence
we leave their use for future work.

Finally, Figure 8 shows the results for the convolutional gridding edge detection method
when complex Gaussian noise is added to the Fourier samples for both the trapezoidal rule

3 In this case, although the operations are not commutative, it is clear that there are admissible concentra-
tion factors in the method described in [13] that account for these interim interpolating steps.
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Fig. 5: (a) Convolutional gridding edge detection for (23) given 513 logarithmically spaced
Fourier samples. The DCFs are given by (22), and the window function is given by (21)
with c = 10−12 and λ = 13. The regularized indicator function is given by (12) with various
choices of σ . (b) Log plot of | ˆ̃gcg(k)|.
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(a) Trapezoidal rule DCFs for jittered sampling
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(b) Iterative DCFs for jittered sampling

Fig. 6: A comparison of trapezoidal rule and iterative DCFs for jittered sampled Fourier
data. N = 32.

and iterative DCFs. Note that the trapezoidal rule DCFs increase the contribution of the high
frequency modes, and the corresponding errors are exacerbated by the added noise. It is also
evident that reducing the noise in the smooth regions will necessarily cause “smearing” over
the jump locations.

4 Numerical examples

We now provide both one and two dimensional numerical experiments to demonstrate the
efficacy of the convolutional gridding edge detection method. For context, we compare our
results with those that perform edge detection as a post-processing procedure. Specifically,
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(a) Trapezoidal rule DCFs for log sampling
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(b) Iterative DCFs for log sampling, with tolerance 1×10−2

Fig. 7: A comparison of trapezoidal rule and iterative DCFs for logarithmically sampled
Fourier data. N = 32.

f̃(
x)

−3 −2 −1 0 1 2 3

0

0.5

1

 

 

σ=.02

−3 −2 −1 0 1 2 3

0

0.5

1

 

 

σ=.05

−3 −2 −1 0 1 2 3

0

0.5

1

 

 

σ=.08

f̃(
x)

−3 −2 −1 0 1 2 3

0

0.5

1

 

 

σ=.02

−3 −2 −1 0 1 2 3

0

0.5

1

 

 

σ=.05

−3 −2 −1 0 1 2 3

0

0.5

1

 

 

σ=.08

x x
(a) (b)

Fig. 8: Jump function approximation for (23) given logarithmically sampled Fourier data
with N = 256 using (a) trapezoidal DCFs and (b) iterative DCFs. Complex Gaussian noise
with a variance of .012 is introduced to each Fourier mode. Indicator function width param-
eter σ is varied.

we compute the discrete (uniform) Fourier coefficients of fcg in (7) and then employ the
concentration factor method, [13], which constructs the jump function approximation from
a finite sampling of uniform Fourier data. We observe that the results are very similar, al-
though as mentioned previously, using edge detection as a post-processing method is more
costly. We note that the original concentration factor method can be made to be high order
in smooth regions by using an oscillatory regularized indicator function that has canceling
moments in the corresponding harmonic partial sum expansion, [12]. However, more oscil-
lations are introduced near the jump discontinuities. In the case where the Fourier data is
non-equally spaced, the error incurred at the regridded high frequency modes exacerbates
these oscillatory effects and causes inaccurate jump values. Since the underlying sequence
is non-harmonic, the convolutional gridding edge detection algorithm uses a non-oscillatory



14 Adam Martinez et al.

regularized indicator (bump) function, e.g. (12), resulting in a smoothing effect of the jump
function approximation (recall Figure 3). As will be demonstrated later, it is still able to
distinguish jump discontinuities from steep gradients, which is not typically the case for
image based edge detection methods, such as those found in [4,7]. Because the regridded
coefficients are more likely to be inaccurate in the high frequency modes, it is better to ap-
ply the non-oscillatory regularized indicator function, as it will help to damp the inaccurate
high frequency coefficients. Results from the concentration factor method based on given
integer Fourier data, using the same regularized indicator function in (12) to determine the
concentration factors, are also included for reference.

4.1 One dimensional convolutional gridding edge detection

Figure 9 compares our convolutional gridding edge detection results for (23) to the results
given by the concentration factor method used both as a post-processing technique for the
convolutional gridding function approximation (Algorithm 1) as well as when the Fourier
data is uniformly sampled. In the convolutional gridding cases, the data was sampled loga-
rithmically. To demonstrate robustness, we used the trapezoidal DCFs given in (22), and note
that using the iterative DCFs did not yield significantly better results for our examples. We
also used the window function defined by (21) with σ = .03. The same comparison is made
in Figure 10 for a function containing six jump discontinuities. The steep gradient between
the fifth and sixth jump emphasizes the need for accurate high frequency information.
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Fig. 9: Edge detection results for the sawtooth function (23) using (top) the concentration
factor method after convolutional gridding, (middle) the convolutional gridding edge detec-
tion method, and (bottom) the concentration factor method given uniform Fourier data.

4.2 Two dimensional convolutional gridding edge detection

In two dimensions we face the added challenge of not having an intuitive definition of a
jump discontinuity. To describe how our convolutional gridding method may be applied, we
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Fig. 10: (a) Original function and jump function. (b) Comparison between convolutional
gridding edge detection and concentration factor method. The concentration factor method
is performed both after convolutional gridding and for given integer coefficients. In each
case N = 256.

use an analogous integration by parts approach to define a two dimensional “edge”, but note
that other definitions may be more useful for a particular application domain.

Suppose f : R2 → R is a compactly supported piecewise smooth function on some
proper subset of [−π,π]2 for which we are given non-uniform Fourier data,

f̂ (ωk,ω`) =
∫

π

−π

∫
π

−π

f (x,y)e−i(ωkx+ω`y)dxdy, (24)

where −N < k, l < N. We define the jump function as

[ f ](x,y) :=
M

∑
j=1

[ f ](Pj)IPj (x,y), (25)

where the x and y components of each discontinuity Pj, j = 1, · · · ,M, are given by (ξ ,η),
and IPj (x,y) is the indicator function which has value 1 at each Pj and 0 everywhere else.
As discussed previously, it is not straightforward how the jump value, [ f ](P), should be
calculated. Our derivation below demonstrates that there is a reasonable interpretation to
[ f ](P) that relates the Fourier coefficients of the image to (25). For ease of presentation we
assume that f has one jump discontinuity at the point (ξ ,η). The derivations that follow
extend naturally for multiple jumps, assuming that the internal boundaries of the underlying
image consist of smooth curves.

As in the one dimensional case, we will need to regularize the indicator function IP,
leading to the approximation

[ f ](x,y)≈
M

∑
j=1

[ f ](Pj)HPj (x,y) =: f̃ (x,y). (26)
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The simplest approach to constructing HP is to use a separable function, e.g.

HP(x,y) = Hξ (x)Hη(y),

and then choose each one dimensional regularized indicator function according to the pre-
viously established admissibility. For example, we can use (12) to obtain

HP(x,y) = exp
(
− (x−ξ )2 +(y−η)2

2σ2

)
. (27)

Assuming that the internal edges do not lie near the ends of the domain, the corresponding
Fourier transform can be approximated by its leading term

ĤP(ωk,ω`)≈ 2πσ
2e−i(ξ ωk+ηω`)e−

1
2 σ2(ω2

k +ω2
` ). (28)

We also need a relationship between the given Fourier data, f̂ (ωk,ω`), and the approx-
imate jump function, (26). As in the one dimensional case, we will apply integration by
parts. Let us first define [ f ](ξ ,y) := f (ξ+,y)− f (ξ−,y) to be the jump function in y along
the coordinate of discontinuity in x. Then, ignoring higher order terms we have for each
fixed y:

∫
π

−π

f (x,y)e−iωkxdx ≈

(
f (x,y)e−iωkx

−iωk

∣∣∣∣
ξ−

−π

+
f (x,y)e−iωkx

−iωk

∣∣∣∣
π

ξ+

)

= −e−iωkξ

iωk
( f (ξ−,y)− f (ξ+,y))

=
e−iωkξ

iωk
[ f ](ξ ,y). (29)

By assumption, the only discontinuity in [ f ](ξ ,y) is at y = η . Thus, disregarding higher
order terms, we can substitute (29) into (24) and obtain

f̂ (ωk,ω`) ≈
e−iωkξ

iωk

(∫
η−

−π

[ f ](ξ ,y)e−iω`ydy+
∫

π

−η+
[ f ](ξ ,y)e−iω`ydy

)

≈ −e−i(ξ ωk+ηω`)

ωkω`
[ f ](ξ ,η), (30)

where we say that [ f ](ξ ,η), which approximates the difference of f in x and y across an
internal boundary curve at the point (ξ ,η), is the approximate jump value [ f ](P) in (25).
Note that when [ f ](ξ ,y) is continuous (in y) the right hand side in (30) is zero, that is, only
higher order terms remain in the integration by parts approximation. The same is true, of
course, if we reverse the order of calculation, and [ f ](x,η) is continuous in x. This yields
an important consequence for our method, namely, that if an edge occurs in either the x
or y direction, but not both, it will not be located. Figure 11(b) demonstrates this unwanted
effect. From this perspective it may be advantageous to define a two dimensional edge as the
magnitude of the gradient vector. However, in this case the relationship between the Fourier
coefficients and the jump function is nonlinear, and the corresponding derivation becomes
more complicated. As will be demonstrated later, another way to alleviate this difficulty is
to reconstruct the jump function twice – first as prescribed above, and second to a rotated
image.
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Finally, we obtain an approximation to the Fourier transform of the jump function using
(30) and (28) as

[̂ f ](ωk,ω`)≈ ̂̃f (ωk,ω`) = [ f ](ξ ,η)Ĥp(ωk,ω`)≈−2πσ
2
ωkω` f̂ (ωk,ω`)e−

1
2 σ2(ω2

k +ω2
` ).
(31)

The coefficients in (31) are now directly implemented into the two dimensional version of
Algorithm 2 to recover the approximation of the edge map given by (26). Although we plot
the approximation to | f̃ (x,y)| in all of our examples that follow, we note that it is feasible
that some useful information may be obtained from retaining the signed non-zero values in
(26).

In our two dimensional experiments we used the convolutional gridding code provided
by in the Image Reconstruction Toolbox4 which uses an iterative process to construct the
DCFs and the Kaiser Bessel window as φ(x,y). We note again (see Remark 2) that the first
three requirements outlined in Section 3.1 for a window function are satisfied, but the Kaiser
Bessel window does not have the value of 1 in most of the domain. Hence we must divide
by φ (deapodization), yielding additional round off error in the reconstruction of the two
dimensional edge map.

Figure 11 demonstrates the results for (26) when the Fourier data is sampled uniformly.
The target image is a circle of unit value. As predicted by the formulation of (30), the method
is unable to detect edges that lie only in the horizontal or vertical direction. In previous
investigations concerning edge detection in images from uniform Fourier data, it was found
that the results were best when a line by line approach was used in each dimension and then
combined to form an edge map, [2,3,8]. In the case of non-uniform sampling, this would
mean that the convolutional gridding reconstruction would first have to be computed, and
then the FFT used to generate uniform Fourier coefficients.

(a) target image (b) edge map

Fig. 11: Target image and corresponding edge map given 257× 257 equispaced Fourier
samples.

Figure 12(a) displays a representative trajectory from which Fourier samples are col-
lected in MRI. In our examples we use this spiral trajectory made up of 463,247 sampling

4 http://web.eecs.umich.edu/~fessler/code/

http://web.eecs.umich.edu/~fessler/code/
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points, approximately a 6802 grid. Figure 12(b) depicts the corresponding edge map for the
target image using the convolutional gridding approximation of (26).
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(a) spiral sampling example (b) edge map

Fig. 12: (a) Fourier sampling pattern (b) convolutional gridding edge detection.

As in Figure 11(b), the edges are not seen on the vertical and horizontal axes. One way to
rectify this for both the uniform and non-uniform cases is to rotate the figure before applying
the edge detection algorithm. This will cause the “missing” edges to occur at the angle of
rotation, rather than on the vertical and horizontal axes. Specifically, we compute

f̃R(x,y) = R−1ER̂̃f (ωx,ωy), (32)

where R is the standard rotation matrix

R =

(
cosθ −sinθ

sinθ cosθ

)
,

E is the convolutional gridding matrix, and ̂̃f (ωx,ωy) are the Fourier samples of the approx-
imated regularized jump function. Images with missing edges occurring at different angles
are then combined (averaged or otherwise) to provide a complete description of the edges.

Figure 13 demonstrates our edge detection method on the famous Shepp-Logan phan-
tom image, e.g. [22]. Here we have implemented the rotation described by (32), combining
results using θ = 0 and θ = π

4 and then taking the maximum between the two reconstruc-
tions.

We note that there are still unwanted artifacts present in Figure 13(b) and (c). Further-
more, the aggregation of rotated images (done by taking the maximum in order to enusre
the edges are captured) may indeed intensify these unwanted features. Thresholding based
on a-priori knowledge of the underlying image may help to remove some of the unwanted
artifacts. For comparison purposes, Figure 14 uses a line by line implementation of the con-
centration factor method in the vertical and horizontal directions on data that have first been
processed by the usual convolutional gridding algorithm. The results from both directions
are averaged to form the edge map. Besides the extra computational cost, it appears that the
error caused by the final deapodization step results in additional oscillations, some of which
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(a) Shepp-Logan Phantom (b) Edge Map (c) Interior Edge Map Detail

Fig. 13: Convolutional gridding edge detection for the Shepp-Logan phantom using rotation.
The data are sampled at 463,247 non-uniform points.

(a) line-by-line con. factor edge map (b) interior edge details

Fig. 14: Edge reconstruction from a line-by-line concentration factor method applied as
a post-processing method to the convolutional gridding approximation. The reconstructed
uniform Fourier data are placed on a 513X513 grid.

have almost the same intensity values as those in the Shepp Logan phantom. This will be
investigated more in future work.

Figure 15 demonstrates the convolutional gridding edge detection method on an actual
MRI image. Here we are given a highly resolved (833× 833) reconstructed image from
which we compute the non-uniform Fourier data on a spiral sampling pattern resembling
Figure 12. The total number of non-uniform points used is 463,247, which is approximately
6802.

4.3 Comparison to Other Edge Detection Algorithms

It is also feasible to post-process the image obtained via convolutional gridding using a pix-
elated edge detection algorithm, such as in [4,7]. These methods essentially detect edges by
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(a) target image (b) edge map

Fig. 15: GE phantom and its edge map.

approximating (low order) first derivatives using neighboring pixel data. While very effec-
tive for piecewise constant images, they typically are unable to distinguish edges from steep
gradients or even smooth variation. A distinct advantage of the convolutional gridding edge
detection method over these low order pixel based methods is that, because of its ability to
discern edges from steep gradients and other types of variation, it is less likely to register
false edges. Figure 16 compares the results of the convolutional gridding edge detection
method with an edge map obtained by applying the Canny edge detection algorithm, [4],
found in the MATLAB image processing toolbox. In the latter case, the target image is first
reconstructed using the standard convolutional gridding technique. The target image, seen
in Figure 16(a), is created by overlaying the function given by

h(x,y) =
1
2
(
cos(4x)2 + sin(4y)2) (33)

onto the circle of the type depicted in Figure 11(a). It should be noted that the patterned
surface inside the circle contains no discontinuities and has continuous derivatives. More-
over, the “holes” seen on the circle’s boundary in Figure 16(c) accurately depict a smooth
transition from the interior surface to that boundary. On the other hand, as demonstrated in
Figure 16(d), the Canny method is unable to distinguish the smooth variation in (33) from
the actual edges, which may cause a false registration of edges in clinical diagnoses. It was
also shown in [18] that noise introduced into the Fourier data, even in the uniform case, will
further exacerbate the problem of false registration when a pixel based method is used.

5 Concluding Remarks

In this paper we developed an edge detection method from non-uniform Fourier data using
the convolutional gridding algorithm. Our method has several advantages. First, it is efficient
since the FFT can be employed. Second, large interpolation errors in the high frequency
coefficients can be controlled by careful selection of the parameters in the convolutional



Edge Detection from Non-Uniform Fourier Data Using the Convolutional Gridding Algorithm 21

(a) target image (b) CG reconstruction (c) CG edge detection (d) CG reconstruction fol-
lowed by Canny edge detec-
tion

Fig. 16: Comparison of convolutional gridding edge detection with Canny edge detection
used as a post-processing method. 463,247 non-uniform points were used.

gridding algorithm. This is especially important as critical information about edges is car-
ried in these modes. Third, it is a single step process, meaning that the edges are determined
directly from the Fourier data and the image does not have to be reconstructed. This implies
that processes such as target identification and tissue segmentation can be achieved without
first reconstructing an image. Moreover, as demonstrated by our numerical examples, our
method is more accurate than edge detection algorithms that post-process reconstructed im-
ages. Finally, our method appears to be robust in the presence of noise, although this issue
must be further explored.

Our method requires the use of several parameters, which can potentially be tuned for
particular applications. While the window function design appears to be fairly robust, it is
critical that the construction of the DCFs ensure that error is minimized in the high frequency
coefficients. This will be the topic of future investigations, especially for multi-dimensions.
In addition, as our method is described here, it does not take advantage of any prior informa-
tion about the underlying function. Sparsity enforcing techniques, such as the one described
in [21], can be employed with some modification to enhance the quality of the edge map.
The edges might also be characterized in some specific way, depending on the application.
We will explore algorithms that consider prior information in future investigations.
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6 Appendix

The following script implements the convolutional gridding edge detection algorithm in one
dimension for given Fourier coefficients of a sawtooth function:

1 %% Gridding Reconstruction
2 % This script uses the Fourier data of f at 2N+1 nonuniform points to
3 % reconstruct an approximation of the jump function [f](x).
4

5 clear all; clc; close all;
6 %% Non−Uniform Sampling pattern
7 % No. of input Fourier modes is 2N+1
8 N = 256;
9

10 % "Jittered" samples
11 % k = [−N:N] + sign( (rand(1,2*N+1)−.5) ) .* rand(1, 2*N+1) *.25;
12

13 % Logarithmic sampling
14 k = [−fliplr(logspace(−.25, log10(N), N)) 0 logspace(−.25, log10(N), N)];
15

16 %% Function and Fourier coefficients
17 numpts = 513;
18 x = linspace(−pi,pi,numpts);
19 x(end) = [];
20

21 % unit ramp
22 f = @(x) ((−pi−x)/2/pi).*(x<=0)+((pi−x)/2/pi).*(x>0);
23 fx = f(x);
24 fxhat = 1./(2*pi*1i*k).';
25 fxhat(N+1) = 0;
26

27 %% Noise is introduced to spectral data
28 noiseVar = .01ˆ2; % noise variance
29 noiseCfs = sqrt(noiseVar/2)*randn(2*N+1,1) + ...
30 1i*(sqrt(noiseVar/2)*randn(2*N+1,1));
31 fxhat = fxhat + noiseCfs;
32

33 %% Jump Function transform approximation at non−uniform points
34

35 sigma = .03; % width parameter for regularized indicator
36

37 % Gaussian Indicator function
38 jhat = fxhat*1i.*k.'*2*sigma*sqrt(pi/2).*exp(−1/2*sigmaˆ2*k.'.ˆ2);
39

40 %% (TRAPEZOIDAL) Density compensation
41 wts = zeros(1,2*N+1);
42 for ind a = 2:2*N
43 wts(ind a) = .5*k(ind a+1)−.5*k(ind a−1);
44 end
45 wts(1) = k(2)−k(1); wts(end) = k(end)−k(2*N);
46

47 jweighted = jhat.*wts.';
48

49 %% Gridding
50 c = 1.E−12; % Gaussian width
51 lambda = 13;
52

53 e = 15; % phi hat(w) = 0, |w|>e
54
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55 phi = @(x) exp(−c*(x).ˆ(2*lambda));
56

57 % The gridding procedure
58 intModes = −N:N;
59 eqMat = repmat(intModes,2*N+1,1);
60 kMat= repmat(k.',1,2*N+1);
61 loc = abs(eqMat−kMat)<= e;
62 phat = fourierCoeffs(phi(x), (eqMat−kMat).', x);
63 regrid = jweighted.'*(phat.*loc);
64

65 %% Reconstruction
66 % Compute a Fourier partial sum reconstruction
67 % Fourier matrix (2pi−periodic function)
68 four = exp(1i*x.'*(−N:N));
69

70 % The partial sum
71 g = four*regrid.';
72 g = real(g);
73

74 %% Plot results
75 figure;
76 plot(x, fx, 'k','LineWidth',2);
77 hold on;
78 plot(x,g,'b','LineWidth',2);
79 xlabel('x');
80 ylabel('y');
81 xlim([−pi pi])
82 legend('Original Function','Edge Reconstruction')
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