Skip to main content
Log in

Fourier Spectral Methods for Degasperis–Procesi Equation with Discontinuous Solutions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop, analyze and test the Fourier spectral methods for solving the Degasperis–Procesi (DP) equation which contains nonlinear high order derivatives, and possibly discontinuous or sharp transition solutions. The \(L^2\) stability is obtained for general numerical solutions of the Fourier Galerkin method and Fourier collocation (pseudospectral) method. By applying the Gegenbauer reconstruction technique as a post-processing method to the Fourier spectral solution, we reduce the oscillations arising from the discontinuity successfully. The numerical simulation results for different types of solutions of the nonlinear DP equation are provided to illustrate the accuracy and capability of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis. Techniques of scientific computing, vol. 5, pp. 209–486. Elsevier, Amsterdam (1997)

    Google Scholar 

  2. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publication, New York (2001)

    MATH  Google Scholar 

  3. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    Google Scholar 

  6. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)

    Google Scholar 

  7. Chen, Z., Shu, C.-W.: Recovering exponential accuracy from collocation point values of smooth functions with end-point singularities conservative schemes. J. Comput. Phys. (appear)

  8. Coclite, G.M., Karlsen, K.H.: On the well-posedness of the Degasperis–Procesi equation. J. Funct. Anal. 233, 60–91 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coclite, G.M., Karlsen, K.H.: On the uniqueness of discontinuous solutions to the Degasperis–Procesi equation. J. Differ. Equ. 234, 142–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coclite, G.M., Karlsen, K.H., Risebro, N.H.: Numerical schemes for computing discontinuous solutions of the Degasperis–Procesi equation. IMA J. Numer. Anal. 28(1), 80–105 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Rat. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Degasperis, A., Procesi, M.: Asymptotic integrability. In: Degasperis, A., Gaeta, G. (eds.) Symmetry and Perturbation Theory, pp. 23–37. World Scientific Publishers, River Edge, NJ (1999)

    Google Scholar 

  13. Degasperis, A., Holm, D.D., Hone, A.: A new integrable equation with peakon solutions. Theor. Math. Phys. 133, 1463–1474 (2002)

    Article  MathSciNet  Google Scholar 

  14. Dullin, H.R., Gottwald, G.A., Holm, D.D.: On asymptotically equivalent shallow water wave equations. Phys. D 190, 1–14 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feng, B., Liu, Y.: An operator splitting method for the Degasperis–Procesi equation. J. Comput. Phys. 228, 7805–7820 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gelb, A., Tadmor, E.: Detection of edges in spectral data II. nonlinear enhancement. Appl. Comput. Harmon. Anal. 7, 101–135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gelb, A., Tadmor, E.: Enhanced spectral viscosity approximations for conservation laws. Appl. Numer. Math. 33, 3–21 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gelb, A., Tadmor, E.: Detection of edges in spectral data II. nonlinear enhancement. SIAM J. Numer. Anal. 38, 1389–1408 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM-CBMS, Philadelphia (1977)

    Book  MATH  Google Scholar 

  20. Gottlieb, D., Shu, C.-W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39, 644–668 (1998)

    Article  MathSciNet  Google Scholar 

  21. Guo, B.-Y.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  22. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  23. Hoel, H.: A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis–Procesi equation. Electron. J. Differ. Equ. 2007, 1–22 (2007)

    MathSciNet  Google Scholar 

  24. Ivanov, R.: Water waves and integrability. Philos. Trans. R. Soc. A 365, 2267–2280 (2007)

    Article  MATH  Google Scholar 

  25. Johnson, R.S.: The classical problem of water waves: a reservoir of integrable and nearly-integrable equations. J. Nonlinear Math. Phys. 10(Supplement 1), 72–92 (2003)

    Article  MathSciNet  Google Scholar 

  26. Karniadakis, G.E., Sherwin, S.T.: Spectral/hp Element Methods for CFD. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  27. Liu, H., Huang, Y., Yi, N.: A Conservative discontinuous Galerkin Method for the Degasperis–Procesi Equation, Methods Appl. Anal. (submitted)

  28. Lundmark, H.: Formation and dynamics of shock waves in the Degasperis–Procesi equation. J. Nonlinear Sci. 17, 169–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Miyatake, Y., Matsuo, T.: Conservative finite difference schemes for the Degasperis–Procesi equation. J. Comput. Appl. Math. 236, 3728–3740 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  31. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shockcapturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, Y., Shu, C.W.: A local discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for the Degasperis–Procesi equation. Commun. Comput. Phys. 10, 474–508 (2011)

    MathSciNet  Google Scholar 

  34. Yu, C.H., Sheu, T.W.H.: A dispersively accurate compact finite difference method for the Degasperis–Procesi equation. J. Comput. Phys. 236, 493–512 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, G., Qiao, Z.: Cuspons and smooth solitons of the Degasperis–Procesi equation under inhomogeneous boundary condition. Math. Phys. Anal. Geom. 10, 205–225 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhua Xia.

Additional information

Research supported by NSFC Grant No.11101400, No.11371342, Doctoral Fund of Ministry of Education of China No. 20113402120015 and SRF for ROCS SEM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Y. Fourier Spectral Methods for Degasperis–Procesi Equation with Discontinuous Solutions. J Sci Comput 61, 584–603 (2014). https://doi.org/10.1007/s10915-014-9839-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9839-8

Keywords

Navigation