Skip to main content
Log in

A High-Order Discontinuous Galerkin Discretization with Multiwavelet-Based Grid Adaptation for Compressible Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Multiresolution-based mesh adaptivity using biorthogonal wavelets has been quite successful with finite volume solvers for compressible fluid flow. The extension of the multiresolution-based mesh adaptation concept to high-order discontinuous Galerkin discretization can be performed using multiwavelets, which allow for higher-order vanishing moments, while maintaining local support. An implementation for scalar one-dimensional conservation laws has already been developed and tested. In the present paper we extend this strategy to systems of equations, in particular to the equations governing inviscid compressible flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alpert, B.: A class of bases in \(L^2\) for the sparse representation of integral operators. SIAM J. Math. Anal. 24, 246–262 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpert, B., Beylkin, G., Gines, D., Vozovoi, L.: Adaptive solution of partial differential equations in multiwavelet bases. J. Comput. Phys. 182, 149–190 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, J.D.: Fundamentals of Aerodynamics. McGraw-Hill, NY (2007)

    Google Scholar 

  4. Archibald, R., Fann, G., Shelton, W.: Adaptive discontinuous Galerkin methods in multiwavelets bases. Appl. Numer. Math. 61, 879–890 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bacry, E., Mallat, S., Papanicolaou, G.: A wavelet based space-time adaptive numerical method for partial differential equations. Math. Model. Numer. Anal. 26, 793–834 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)

    Article  MATH  Google Scholar 

  8. Bramkamp, F., Lamby, P., Müller, S.: An adaptive multiscale finite volume solver for unsteady and steady state flow computations. J. Comput. Phys. 197, 460–490 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calle, J.L.D., Devloo, P.R.B., Gomes, S.M.: Wavelets and adaptive grids for the discontinuous Galerkin method. Numer. Algorithms 39, 143–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, J., Shi, Z.: Application of a fourth-order relaxation scheme to hyperbolic systems of conservation laws. Acta Mech. Sinica 22, 84–92 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–244 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cohen, A.: Numerical Analysis of Wavelet Methods. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  15. Cohen, A., Kaber, S.M., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72(241), 183–225 (2003)

    Article  MATH  Google Scholar 

  16. Dahmen, W.: Wavelet methods for PDEs—some recent developments. J. Comput. Appl. Math. 128, 133–185 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  18. Gerhard, N., Müller, S.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws: multi-dimensional case. Comput. Appl. Math. (2014). doi:10.1007/s40314-014-0134-y

  19. Gottschlich-Müller, B., Müller, S.: Adaptive finite volume schemes for conservation laws based on local multiresolution techniques. In: Fey, M., Jeltsch, R (eds.) Hyperbolic Problems: Theory, Numerics, applications, pp. 385–394. Birkhäuser (1999)

  20. Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)

    Google Scholar 

  21. Harten, A., Hyman, J.M.: Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Harten, A.: Discrete multi-resolution analysis and generalized wavelets. Appl. Numer. Math. 12, 153–192 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115, 319–338 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48, 1305–1342 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hovhannisyan, N., Müller, S., Schäfer, R.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. Math. Comput. 83(285), 113–151 (2014)

    Article  MATH  Google Scholar 

  26. Iacono, F., May, G., Müller, S., Schäfer, R.: A discontinuous Galerkin discretization with multiwavelet-based grid adaptation for compressible flows. In: 49th AIAA Aerospace Sciences Meeting, 2011–0200 (2011)

  27. Iacono, F., May, G., Müller, S., Schäfer, R.: An adaptive multiwavelet-based DG discretization for compressible fluid flow. In: Kuzmin, A. (ed.) ICCFD 2010, Proceedings of 6th International Conference on Computational Fluid Dynamics, pp. 813–822. Springer, Berlin (2011)

  28. Iacono, F.: High-order methods for convection-dominated nonlinear problems using multilevel techniques. Ph.D. thesis, RWTH Aachen University (2011)

  29. Jouhaud, J.C., Montagnac, M., Tourrette, L.: A multigrid adaptive mesh refinement strategy for 3D aerodynamic design. Int. J. Numer. Methods Fluids 47, 367–385 (2005)

    Article  MATH  Google Scholar 

  30. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  31. Levy, D., Puppo, G., Russo, G.: A fourth order central WENO scheme for multi-dimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 24, 480–506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  33. Meshkov, E.E.: Instability of the interface of two gases accelerated by a shock wave. Sov. Fluid Dy. 4, 101–104 (1969)

    Article  MathSciNet  Google Scholar 

  34. Müller, S.: Adaptive multiresolution schemes. In: Herbin, R., Kröner, D. (eds.) Proceedings of Finite Volumes for Complex Applications III, June, 24–28, 2002, Porquerolles (France), pp. 119–136. Hermes Penton Science (2002)

  35. Müller, S.: Multiresolution schemes for conservation laws. In: DeVore, R., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 379–408. Springer, Berlin (2009)

  36. Müller, S.: Adaptive Multiscale Schemes for Conservation Laws. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  37. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, chap. 11, pp. 409–539. Springer, Berlin (2009)

  38. Richtmyer, R.D.: Taylor instability in a shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13, 297–319 (1960)

    Article  MathSciNet  Google Scholar 

  39. Schäfer, R.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. Ph.D. thesis, RWTH Aachen University (2011)

  40. Shelton, A.B.: A multi-resolution discontinuous Galerkin method for unsteady compressible flows. Ph.D. thesis, Georgia Institute of Technology (2008)

  41. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  43. Strela, V.: Multiwavelets: theory and applications. Ph.D. thesis, Massachussettes Institute of Technology (1996)

  44. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  45. Vuik, M.: Limiting and shock detection for discontinuous Galerkin solutions using multiwavelets. Master’s thesis, Delft Institute of Applied Mathematics, Delft University of Technology (2012)

  46. Wang, Z.J. (ed.): Adaptive High-Order Methods in Computational Fluid Dynamics. World Scientific Publishing Company, Singapore (2011)

  47. Woodward, P.: Trade-offs in designing explicit hydrodynamical schemes for vector computers. In: Rodrigue, G. (ed.) Parallel Computations, pp. 153–172. Academic Press, London (1982)

  48. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yee, H., Sandham, N., Djomehri, M.: Low dissipative high order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199–238 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Financial support from the Deutsche Forschungsgemeinschaft (German Research Association) through grant GSC 111 and in the frameworks of the Collaborative Research Center SFB-TR-40 and the Research Unit FOR 1779, and by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under Grant number FA8655-08-1-3060, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhard, N., Iacono, F., May, G. et al. A High-Order Discontinuous Galerkin Discretization with Multiwavelet-Based Grid Adaptation for Compressible Flows. J Sci Comput 62, 25–52 (2015). https://doi.org/10.1007/s10915-014-9846-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9846-9

Keywords

Navigation