Skip to main content
Log in

Decay Properties for the Numerical Solutions of a Partial Differential Equation with Memory

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study decay properties of the numerical solutions of a class of partial differential equations

$$\begin{aligned} \ddot{u}(t)+Au(t)-\int \limits _{0}^{t}\beta (t-s)Au(s)ds=0,\quad t>0,\,u(0)=u_{0},\,\dot{u}(0)=u_{1}, \end{aligned}$$

which arises in the theory of linear viscoelasticity. Here \( A \) is a positive self-adjoint densely defined linear operator in a Hilbert space \( \mathbf {H} \), \( u_{0},\,u_{1}\in \mathbf {H} \) and the real-valued kernel \( \beta (t) \) is assumed to be nonnegative non-increasing, not identically \( 0 \), and satisfy \( \int _{0}^{\infty }\beta (t)dt< 1 \). The proposed discretization uses convolution quadrature based on the trapezoidal rule in time, and piecewise linear finite elements in space. We establish the uniform \( l_{t}^{\infty }(0,\infty ;\,\mathbf {H}) \bigcap \) \( l_{t}^{1}(0,\infty ;\mathbf {H}) \) stability numerical schemes, and Polynomial decay numerical methods in time. The fully discrete uniform \( l_{t}^{\infty }(0,\infty ;\,\mathbf {H}) \) error estimates are derived. Some simple numerical examples illustrate our theoretical error bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prüss, J.: Decay properties for the solutions of a partial differential equation with memory. Arch. Math. 92, 158–173 (2009)

    Article  MATH  Google Scholar 

  2. Larsson, S., Saedpanah, F.: The continuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity. IMA J. Numer. Anal. 30, 964–986 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pani, A.K., Thomée, V., Wahlbin, L.B.: Numerical methods for hyperbolic and parabolic integro-differential equations. J. Integr. Equ. Appl. 4, 533–584 (1992)

    Article  MATH  Google Scholar 

  4. Prüss, J.: Monographs in mathematics. Evolutionary Integral Equations and Applications, vol. 87. Birkhäuser, Berlin (1993)

    Chapter  Google Scholar 

  5. Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254, 1342–1372 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Appleby, J.A.D., Fabrizio, M., Lazzari, B., Reynolds, D.W.: On exponential asymptotic stability in linear viscoelasticity. Math. Models Methods Appl. Sci. 16, 1677–1694 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berrini, S., Messaoudi, S.A.: Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlin. Anal. 64, 2314–2331 (2006)

    Article  Google Scholar 

  8. Fasá, E., Prüss, J.: Asymptotic behaviour of a semilinear viscoelastic beam model. Arch. Math. 77, 488–497 (2001)

    Article  Google Scholar 

  9. Fabrizio, M., Polidoro, S.: Asymptotic decay for some differential systems with fading memory. Appl. Anal. 81, 1245–1264 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lubich, Ch., Sloan, I.H., Thomée, V.: Non-smooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65, 1–17 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. McLean, W., Thomée, V.: Asymptotic behavior of numerical solutions of an evolution equation with memory. Asymptot. Anal. 14, 257–276 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Xu, D.: Uniform \(l^{1}\) behaviou for time discretization of a volterra equation with completely monotonic kernel: I. stability. IMA J. Numer. Anal. 22, 133–151 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xu, D.: Stability of the difference type methods for linear Volterra equations in Hilbert spaces. Numer. Math. 109, 571–595 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xu, D.: Uniform \(l^{1}\) behavior in a second-order difference-type method for a linear Volterra equation with completely monotonic kernel I: stability. IAM J. Numer. Anal. 31, 1154–1180 (2011)

    Article  MATH  Google Scholar 

  15. Xu, D.: Weighted \( l^{1} \) Paley-Wiener theorem, with applications to stability of the linear multi-step methods for Volterra equations in Hilbert spaces. J. Math. Anal. Appl. 389, 1006–1019 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harris, C.B., Noren, R.D.: Uniform \( l^{1} \) behavior of a time discretization method for a Volterra integro-differential equation with convex kernel: stability. SIAM J. Numer. Anal. 49, 1553–1571 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, D.: Uniform \(l^{1}\) behavior in the Crank–Nicolson method for a linear Volterra equation with convex kernel. Calcolo 51, 57–96 (2014)

    Google Scholar 

  18. Carr, R.W., Hannsgen, K.B.: A nonhomogeneous integrodifferential equation in Hilbert space. SIAM J. Math. Anal. 10, 961–984 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Carr, R.W., Hannsgen, K.B.: Resolvent formulas for a Volterra equation in Hilbert space. SIAM J. Math. Anal. 13, 459–483 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Prüss, J.: Positivity and regularity of hyperbolic Volterra equations in Banach spaces. Math. Ann. 279, 317–344 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lubich, C.: On convolution quadrature and Hille-Phillips operational calculus. Appl. Numer. Math. 9, 187–199 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lubich, C.: Convolution quadrature revisited. BIT Numer. Math. 44, 503–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics. Springer, Berlin (1997)

    Book  Google Scholar 

  24. Lubich, C.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52, 129–145. MR 89g:65018 (1988)

    Google Scholar 

  25. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cuesta, E., Palencia, C.: A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces. Appl. Numer. Math. 45, 139–159 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, D.: The global behavior of time discretization for an abstract Volterra equation in Hilbert space. Calcolo 34, 71–104 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Xu, D.: Uniform \(L^{1}\) error bounds for the semidiscrete solution of a Volterra equation with completely monotonic convolution kernel. Comp. Math. Appl. 43, 1303–1318 (2002)

    Article  MATH  Google Scholar 

  29. Bramble, J.H., Schatz, A.H., Thomée, V., Wahlbin, L.B.: Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations. SIAM J. Numer. Anal. 14(2), 218–241 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. McLean, W., Thomée, V.: Numerical solution of an evolution equation with a positive type memory term. J. Aust. Math. Soc. B 35, 23–70 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Xu.

Additional information

This work was supported in part by the National Natural Science Foundation of China, contract Grant numbers 11271123, 10971062 and the Innovation and Open Research Project for College of Hunan Province (contract Grant 12K028).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D. Decay Properties for the Numerical Solutions of a Partial Differential Equation with Memory. J Sci Comput 62, 146–178 (2015). https://doi.org/10.1007/s10915-014-9850-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9850-0

Keywords

Mathematics Subject Classification

Navigation