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Abstract. In this paper, which summarized a talk given by the second
author in Waterloo, reports on recent progress the authors have made
in a long term program to prove the existence of time-periodic shock-
free solutions of the compressible Euler equations. We briefly recall our
previous results, describe our recent change of direction, and discuss the
estimates that must be obtained to get the Nash-Moser method to con-
verge. Assuming these estimates, we present a new convergence theorem
for the Nash-Moser method. Our approach reduces the problem to that
of obtaining small divisor estimates for finite dimensional projections of
linearized operators. These operators can be described in detail, and in
principle, this reduces the proof of periodic solutions to the calculation
of the smallest singular value of an N × N matrix.

1. Introduction

We outline our program for proving the existence of nontrivial time- and
space-periodic solutions to the compressible Euler equations,

τt − ux = 0

ut + px = 0 (1)

(1
2 u2 + e)t + (u p)x = 0,

with p = K eS/cτ τ−γ , e = p τ/(γ − 1).
These equations model an inviscid, γ-law gas in Lagrangian frame, in one

space dimension. Since this a nonlinear hyperbolic system, global classical
solutions generally exist only for short times, after which shocks form and
weak entropy solutions need to be considered. There are now mature theories
for the existence, uniqueness and L1-stability of such systems in the class of
solutions having small total variation [4, 16, 1, 2].

The presence of shocks in solutions is stabilizing, in that solutions with
shocks necessarily decay due to the entropy conditions. Riemann first showed
that shocks necessarily form in the isentropic (2× 2) equations [10], and the
corresponding decay theory was settled in the celebrated work of Glimm and

Temple supported in part by NSF Applied Mathematics Grant Number DMS-040-6096.
Young supported in part by NSF Applied Mathematics Grant Number DMS-010-4485.

1



2 BLAKE TEMPLE AND ROBIN YOUNG

Lax [5]. In the isentropic system, shocks necessarily form for all nontriv-
ial data of any size, and the variation of spatially periodic solutions decays
like 1/t. For 3 × 3 systems, it has been shown that shocks form for any
compactly supported initial data having small total variation [6, 7]. Less is
known when the data has large total variation, and in particular for spatially
periodic data, for which large-time but not global existence is known [12].

In a series of papers, the authors discovered a mechanism for the delay or
prevention of shock formation in the full 3×3 Euler equations (1) [13, 15, 14].
This is an effect of multiple wave interactions, in which a compression wave
can change its character and become a rarefaction as it crosses a contact
discontinuity, provided the opposite wave has the appropriate sign and
strength. If this type of interaction occurs in a periodic manner, a periodic
pattern of waves could be set up in which compressions and rarefactions
continually balance, yielding a nontrivial wave structure which is periodic
in both space and time, and has no shocks. This wave structure is described
in [13], and the corresponding linearized problem is studied in [15].

In our ongoing work, the authors are attempting to make this construction
rigorous by proving a perturbation theorem via the Nash-Moser method. In
this paper, we outline our current strategy for completing this program by
describing the Nash-Moser iteration and highlighting the estimates that will
need to be proved to complete the proof of existence of periodic solutions.
We trust that this also provides a useful exposition of the power and use of
the Nash-Moser method.

We begin by briefly describing the fully nonlinear problem after non-
dimensionalization and vectorization, and rewriting it in an abstract form
suitable for study by the Nash-Moser method. In Section 3, we describe the
abstract Nash-Moser Newton iteration that we will use, and in Section 4
we describe the specific norms and smoothing operators that seem to be
best suited to the problem. In Section 5, we explicitly state the bounds
and estimates that are necessary to complete our proof of existence, and in
Section 6 we prove convergence of the iteration, assuming those estimates.
This implies that establishing the estimates in Section 5 would complete the
first proof of existence of periodic solutions of compressible Euler.

As a final comment, in a nutshell, our recent new approach is to address
the issue of resonances in a conservative framework sufficient to obtain small
divisor estimates for finite dimensional approximations of the linearized op-
erators that appear in the Newton method. This follows more closely the
philosophy of Nash-Moser set out in the early work of Moser [9], (with the
added feature of expunging resonant periods), and responds to our earlier
failed attempts at obtaining small divisor estimates in an infinite dimen-
sional setting, c.f. [3].
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2. Nonlinear problem

The solutions described in [13], which exhibit a periodic wave structure,
consist of balanced rarefaction and compressive sound waves interacting with
a stationary entropy profile which consists of a periodic square wave. This
square wave can be characterized by the widths of the different entropy
levels and the size of the entropy jump (or ratio of values). Our nonlinear
problem is to then resolve the forward and backward waves which are to be
superimposed on this entropy profile.

In [15], the authors make several simplifications. The first is to change
the sense of the independent variables, so that the solution evolves in space
rather than time. We then perform a non-dimensionalization and a vector-
ization, so that the fully nonlinear problem can be succinctly expressed.

Once the entropy profile is fixed as a square wave, and because we are
considering solutions without shocks, away from the entropy jumps, the
equations reduce to those of isentropic gas dynamics, the so-called p-system.
After non-dimensionalizing, and written in quasilinear form, this becomes
the system

px + vt = 0

vx − q(p)t = 0, (2)

where v is the rescaled fluid velocity, q(p) = γp−1/γ is the rescaled specific
volume, and we regard the (rescaled) spatial coordinate x as the evolution
variable. We denote the nonlinear evolution operator through θ by E(θ), so
that

E(θ)(U(0, ·)) = U(θ, ·), (3)

where U(x, t) = (p, v)(x, t) solves (2).
Equations (2) hold for both values taken on by the entropy, and the effect

of crossing a contact discontinuity of strength J is to scale v by J , while
leaving p unchanged: that is,

[

p+

v+

]

= J
[

p−
v−

]

, where J ≡
(

1 0
0 J

)

, (4)

the subscripts denoting the states on opposite sides of the entropy jump;
note that J is a diagonal linear operator.

In these non-dimensional variables, the square entropy wave is fully de-
scribed by parameters J , θ and θ, which are, respectively the size of the
jump and the widths of the different entropy levels. Then according to
[13, 15], our nonlinear problem is to find 2π-periodic functions U(·) = (p, v)
and parameters for which

SJ−1E(θ)J E(θ)(U) = U,

where S is a half-period shift, S(u(t)) = u(t − π).
It is convenient to take θ = θ and vectorize the problem: doing so, U

becomes a 4 × 4 vector, U = (p, v, p, v)T , the components corresponding to
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the two different entropy levels. We define the 4 × 4 operators

Ê(θ) =

(

E 0
0 E

)

and Ĵ =

(

0 J−1

S J 0

)

, (5)

where E = E(θ) is given by (3) and J by (4).
With this notation, our fully nonlinear problem can be written

F(U) ≡ Ê(θ)(U) − Ĵ U = 0, (6)

which can be regarded as a 4× 4 problem with 2× 2 blocks. The advantage
of this formulation is that the parameters θ and J are well separated, and
indeed the only nonlinear part of F is in the 2× 2 evolution blocks E , as Ĵ
is linear.

The constant state 1 ≡ (1, 0, 1, 0)T is an exact solution to (5), and we wish
to perturb this to get a nontrivial solution of the nonlinear problem. Lin-
earizing (2) around 1 yields the linear wave equation. This in turn respects
Fourier modes, as does J , which allows us to give a complete description
of the kernel of the linearized operator as a direct sum of 4 × 4 matrix
problems, see [15]. In particular, this linearized operator admits a 1-mode
solution Z = Z(x, t) if and only if

J =
1 + cos θ

1 − cos θ
or J =

1 − cos θ

1 + cos θ
. (7)

More generally, the linearized operator has an n-mode solution if and only
if

J =
1 + cos(nθ)

1 − cos(nθ)
or J =

1 − cos(nθ)

1 + cos(nθ)
;

it follows that if θ is a rational multiple of π, then there are resonances,
while if not, there are small divisors. Thus we cannot apply the Implicit
Function Theorem, and we resort to the Nash-Moser method.

3. Nash-Moser Iteration

We recall the Nash-Moser iteration method [9]. This is a modified New-
ton’s method for solving the equation F(U) = 0, applied to problems in
which Newton’s method does not apply, such as those with small divisors,
loss of derivatives, or both.

First, we recall Newton’s method. To this end, suppose U0, . . . , Um have
been defined: set

Um+1 = Um − Xm+1,

where Xm+1 is defined by

DF(Um)[Xm+1] = Ym, with Ym = F(Um).

Then we estimate

Ym+1 = F(Um+1) −F(Um) + DF(Um)[Xm+1] = O(‖Xm+1‖2),
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where we have used the Taylor expansion for F . Thus if the inverse of the
linearized map DF is bounded, we get

‖Ym+1‖ ≤ K ‖Ym‖2,

that is, quadratic convergence to the root, provided our initial guess U0 is
close enough.

The idea of Nash-Moser is to modify the iteration by mollifying at each
step, in such a way that the approximations remain bounded. Then the
iteration can be defined at each step, and the smoothing is weakened so
that less and less smoothing is introduced at each step, but the higher order
convergence from Newton compensates for the ensuing loss of smoothness,
so that convergence can be proved as long as U0 is close enough to the root
and certain compatibilty conditions are met.

We now write down the abstract Nash-Moser iteration in detail. At the
m-th step, we approximate our fully nonlinear function F by the approx-
imation Fm; we can also approximate the derivative DFm by a modified
linear operator Am, if necessary.

If the iterates U0, . . . , Um, together with associated residuals Yj and dif-
ferences Xj have been defined, we set

Ym = Fm(Um), (8)

where Fm is the m-th (mollified) approximation to F , and solve the linear
equation

Am[Xm+1] = Ym, (9)

where Am[·] ≈ DFm(Um)[·] is an approximation of the derivative DFm,
evaluated at Um. Finally we update the iteration by setting

Um+1 = Um − Xm+1. (10)

Using (8), (9) and (10), we now write

Ym+1 = Fm+1(Um+1) −Fm(Um+1)

+ Fm(Um − Xm+1) −Fm(Um) + Am[Xm+1]

= I + II + III, (11)

where we have set

I = Fm+1(Um+1) −Fm(Um+1),

II = Am[Xm+1] − DFm(Um)[Xm+1], and (12)

III = Fm(Um − Xm+1) −Fm(Um) + DFm(Um)[Xm+1].

We interpret each of these as follows: I is the difference in smoothing be-
tween the m-th and (m + 1)-st steps; II is the error in approximating the
linearized operator; and III is the (quadratic) error from the Taylor expan-
sion of Fm.

If we can find appropriately small bounds for I and II, and if in addition
we can find a bound for Xm+1 in terms of Ym in (9), then the quadratic
Taylor estimate of III means that the iteration will again converge, despite
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the presence of small divisors and/or loss of derivatives. This is the sense
in which the Nash-Moser iteration allows for derivative loss in each of the
above steps.

To carry out this program and prove existence of a solution of the (infinite
dimensional) equation F(U) = 0, we need the following ingredients:

• An appropriate choice of norms;
• A choice of mollified operators Fm;
• A quadratic Taylor estimate for each Fm;
• Convergence with a rate of the operators Fm → F ;
• A good approximation Am of the linearization DFm(Um)[·];
• A bound for the inverse A−1

m ; and
• A good initial guess.

In general, the operator F may also depend on one or more parameters,
denoted Θ. Often, Θ will be a bifurcation parameter which encodes reso-
nances in the fully nonlinear problem. In our case, Θ = (θ, J) represents the
nondimensionalized width of entropy levels and size of the entropy jumps.

When there is a parameter dependence in the problem, such as in our
case, it may be that all of the forward estimates (i.e. estimates on Fm, Am)
are uniform in the parameter, but a uniform inverse estimate for A−1

m is
not available due to resonances. In this case, we can introduce another step
into the Nash-Moser iteration, namely the expunging of resonant parameter
values. That is, at the m-th step, we exclude a set Nm of Θs of small
measure, off of which we do obtain bounds for A−1

m . Restricting the set
of parameter values in this way at each step, we obtain convergence of the
iteration for Θ outside the set ∪Nm, which does not have full measure.

4. Norms and Smoothing

Our nonlinear operator F = Ê − Ĵ consists of evolution in the p-system
(2) and a bounded linear matrix operator (4), which is bounded on any
space using any reasonable norm. We therefore choose the space and norm
appropriate for a nonlinear hyperbolic system. It is well known that these
systems are locally well-posed in the Sobolev spaces Hs, for s > 1/2, [8]. We
need not consider large-time behavior because we are interested in solutions
before the formation of shocks, i.e. gradient blowup.

Recalling that x is the evolution variable in (2), it is convenient to express
(p, v) and q(p) as Fourier series, so we write

p(x, t) =
∑

pk(x)eikt,

v(x, t) = i
∑

vk(x)eikt, and (13)

q(x, t) =
∑

qk(x)eikt,

where the extra i on v is a convenience to ensure the equations for the coeffi-
cients are real. Plugging these into equations (2) and assuming convergence
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as necessary, our PDE (2) can be considered as an infinite system of ODEs,
namely

p′k = k vk, v′k = k qk,

which is closed since we regard

qk(x) = qk(P (x)) = qk(. . . , pj , . . . ),

these being the Fourier coefficients of q(p) = γp−1/γ . We can formally write
this system in matrix notation, as follows. We set

P (x) = 〈pj(x)〉, V (x) = 〈vj(x)〉, and Q(x) = 〈qj(x)〉,

the indices ranging over all of Z, and define the constant differentiation
matrix

D = diag{Z} = [δjk] =

{

1, j = k,

0, j += k.

Then we can write the system as

P ′ = D V, V ′ = D Q(P ), (14)

where these are infinite matrices and convergence of sums is assumed.
We can thus regard (2) as the system of ODEs (14) in the coefficient vec-

tors (P, V ), which are sequences indexed by k ∈ Z. The evolution operator
E(θ) is then integration of (14) from x = 0 to x = θ. The jump operator J
respects modes, and is given componentwise by (4), while the shift operator
S simply multiplies the k-th mode by (−1)k. We thus again write our fully
nonlinear problem as (6), where we now regard F as being defined on the
state

U = (P , V , P , V ) = (〈pj〉, 〈vj〉, 〈pj
〉, 〈vj〉),

each of these being a coefficient vector indexed by Z.
We use the Hs norm for solutions to the PDE (2). By the Plancherel

identity, this can be taken to be

‖(p, v)‖Hs = ‖(P, V )‖s =
√

∑

k2sp2
k + k2sv2

k,

where, without loss of generality, but with slight abuse of notation, we have
neglected the 0-mode term, which according to (14) is constant. Indeed, be-
cause the equations (2), (14) are in conservative form, 0-modes are preserved,
which means that our base state is the fixed constant state 1 throughout
the evolution.

Having described the norms, we now approximate the full nonlinear oper-
ator F with a mollified FN . Rather than the usual Friedrichs mollification,
it is easier to use a simple Fourier cutoff: that is, we obtain the approxi-
mation FN by ignoring all modes beyond the N -th. This is analogous to
(but simpler than) the mollification used by Tadmor in [11]. First, in (2),
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we obtain our smoothed equations by projecting onto modes k with k ≤ N :
that is, if ΠN is the projection, so that

ΠN

[

∑

wke
ikt

]

=
∑

|k|≤N

wke
ikt,

then our smoothed evolution operator EN is given by the projected system

pN
x + vN

t = 0, vN
x −ΠN [q(pN )]t = 0,

where again q(p) = γp−1/γ , and differentiation commutes with projection.
Expressing this in terms of coefficient vectors, and again using ΠN to denote
the projection, so that

ΠN [W ] = ΠN [〈wk〉] = (w−N , . . . , wN ),

then the corresponding projected ODE system is

PN ′
= D

N V N , V N ′
= D

N ΠNQ(PN ), (15)

where D
N = diag{−N, · · · , N} and Q is given as above.

Having projected the evolution operator E , it is now trivial to obtain the
projection of F , namely

FN = ÊN − Ĵ ,

since it is clear that both the jump J and shift S commute with the pro-
jection ΠN .

The Fourier cutoff thus allows us to replace a fully nonlinear PDE with a
finite system of ODEs. This demonstrates one of the major strengths of the
Nash-Moser method, namely by suitably smoothing the nonlinear operator,
we obtain a much simpler object on which to try to derive the appropriate
estimates. Indeed, in our case, the hardest estimate, that of inverting nearby
linearized operators, is reduced to the problem of inverting an N×N matrix.

5. Assumed Bounds

We now explicitly state the bounds which we will need to show that the
Nash-Moser iteration converges. We state these assumptions for an abstract
operator F , which has been approximated by FN , and N is assumed to be
large. Note that we do not require that the approximation FN be finite
dimensional. We also allow F and FN to depend on one or more parameters
θ, although for clarity we keep this dependence implicit, and we have fixed
an appropriate norm.

We make the following assumptions, which should be valid for all U in
some compact neighborhood of our base state, say

‖U − 1‖ ≤ δ ≤ 1

2
,

and uniformly in parameters unless otherwise stated. In each of the following
assumptions, there exist some constant Ki > 0 and exponent pi ≥ 0 for
which the given inequality holds.
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First, we require that the approximation FN is C1 and satisfies a Taylor
estimate, namely

‖FN (U − X) −FN (U) + DFN (U)[X]‖ ≤ K1N
p1‖X‖2. (A1)

Here p1 counts the number of derivatives lost in the Taylor expansion.
Next, the approximations must converge at some positive rate,

‖FN (U) −F(U)‖ ≤ K2N
−p2 , (A2)

which can be equivalently stated by comparing FN (U) and FN+Ñ (U) since
we are working in a Banach space.

If we choose to approximate the linearized map DFN (U) by some AN ,
this approximation must be controlled,

‖AN (U) − DFN (U)‖ ≤ K3N
−p3. (A3)

This approximation could arise if one were to neglect lower order terms, say,
which is often done in the study of hyperbolic systems [8]. If we choose not
to approximate, then AN = DFN , and we can take p3 = ∞.

Finally, we need bounds for the nearby linearized operators,

‖AN (U)−1‖ ≤ K4N
p4, (A4)

where we again allow a loss of p4 derivatives. In general we do not expect
this estimate to hold uniformly because of the presence of resonances, so this
is the step in which we expunge parameters. That is, we require (A4) to
hold for for AN (U) = AN(U, θ), and for θ outside of some set N satisfying

µ(N ) ≤ K5N
−p5, (A5)

where µ is Lebesgue measure on the parameter space.

6. Convergence

We now assume the estimates (A1)–(A5) and prove the convergence of the
Nash-Moser iteration, subject to compatibility constraints on the exponents
pi. The iteration is given by (8), (9) and (10), so we must describe the
m-th approximations Fm and Am: we do this by using the Fourier cutoff,
by setting

Fm = FNm
and Am = ANm

,

where {Nm} is a sequence, to be described below, which increases to ∞.
We must also begin the iteration, by describing the initial guess U0. To

do this, recall that the constant state 1 is a trivial solution of the nonlinear
problem, and the linearization of F around that solution has a one-mode
solution Z, provided (7) holds. Choosing a small amplitude α, we begin the
iteration with the initial guess

U0 = 1 + αZ0, (16)

where Z0 is the 1-mode solution corresponding to a fixed value of the pa-
rameter, say θ0, so that

DF(1; θ0)[Z0] = 0,
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and with ‖Z0‖ = 1, say.
We are now in a position to state our main theorem.

Theorem 1. Suppose that estimates (A1)–(A5) hold for some constants
Ki > 0 and exponents pi which satisfy the compatibility conditions

p1 + 2p4 < p2, p4 < p3, and p4 < p5. (17)

Then there is some α0 > 0, such that for any α < α0, there is a set Gα of
positive measure, such that for θ ∈ Gα, the iteration beginning with initial
guess (16) converges to a nontrivial solution U ≈ U0, satisfying

F(U ; θ) = 0.

The compatibility conditions (17) can be interpreted as follows: the first
expresses the fact that there is enough smoothing that the loss of derivatives
in F and A−1

m can be controlled; the second that our approximation Am is
close enough to the linearization DFm that the inverse is an effective one;
and the third says that we cannot excise too much of the parameter space
to get an effective inverse. As noted earlier, if we can invert DFm without
approximation, we can take p3 = ∞, and similarly if we can invert without
excising parameters, we can take p5 = ∞.

Proof. Once we have chosen the initial iteration U0 using (16), we again
allow θ to vary. We have Y0 = F0(U0) = F0(U0; θ), and we use (A1) to
estimate

‖Y0‖ = ‖F0(1 + αZ0; θ) −F0(1) − αDF0(1; θ0)[Z0]‖
≤ ‖F0(1 + αZ0; θ) −F0(1) − αDF0(1; θ)[Z0]‖

+ α‖DF0(1; θ)[Z0] − DF0(1; θ0)[Z0]‖
≤ K1N

p1

0 α
2 + αC0|θ − θ0|

≤ 2K1N
p1

0 α
2, (18)

provided that θ is restricted to the set

|θ − θ0| ≤
K1

C0
Np1

0 α. (19)

Here the constant C0 is a Lipschitz constant for the function

θ /→ DF0(1; θ)[Z0] ∈ R
4,

since DF(1) respects the 1-mode vector Z0.
Now suppose by way of induction that

‖Ym‖ ≤ N−q
m , (20)

for some q ≥ 0 to be determined. Then from (11), (12), we have

‖Ym+1‖ ≤ ‖I‖ + ‖II‖ + ‖III‖
≤ 2K2N

−p2

m + K3N
−p3

m ‖Xm+1‖ + K1N
p1

m ‖Xm+1‖2,



TOWARDS PERIODIC SOLUTIONS OF EULER 11

where we have used (A2), (A3) and (A1), respectively. Now using (A4) we
estimate

‖Xm+1‖ ≤ K4N
p4

m N−q
m , (21)

for θ /∈ Nm, and substituting in we get

‖Ym+1‖ ≤ 2K2N
−p2

m + K3K4N
−(q+p3−p4)
m + K1K

2
4N−(2q−2p4−p1)

m

≤ N−r
m ,

provided we choose

r < min{ p2, q + p3 − p4, 2q − 2p4 − p1}, (22)

and take N0 to be large enough. Thus our induction hypothesis is verified if

N−r
m ≤ N−q

m+1, that is Nm+1 ≤ N r/q
m . (23)

It remains to choose α, exponents q and r, and the sequence {Nm} in
such a way that convergence is guaranteed. First, assuming r > q, and with
N0 to be chosen, we set

Nm+1 = 0N r/q
m 1, (24)

where 0·1 is the floor function, so that (23) holds for all m. It follows
inductively that Nm grows rapidly,

Nm = O(N (r/q)m

0 ),

and in particular, we can sum the series
∑

N−ν
m ≤ C(ν)N−ν

0 (25)

for some constant C(ν) = O(1), for any ν > 0.
We can choose r > q consistently provided (22) holds, so we ask that each

of
q < p2, q < q + p3 − p4, and q < 2q − 2p4 − p1

hold; eliminating q, we thus require that

p4 < p3 and p1 + 2p4 < p2,

which are the first two conditions in (17).
We now consider the choice of α and N0. First, according to (18), (20),

to start the induction we require

K1N
p1

0 α
2 ≤ N−q

0 , that is α ≤ N−(q+p1)/2
0√

K1
. (26)

We must also show that our iteration converges to a nontrivial solution. To
this end, we use (21) and (25) to estimate

∑

‖Xm+1‖ ≤
∑

K4N
−(q−p4)
m = C(q − p4)N

−(q−p4)
0 .

Thus if we choose
C(q − p4)N

−(q−p4)
0 < α, (27)

then
∥

∥

∥

∑

Xm+1

∥

∥

∥
< α = ‖αZ0‖,
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so that

lim Um = U0 −
∑

Xm+1 = 1 + αZ0 −
∑

Xm+1 += 1,

and the limiting solution is nontrivial. Combining (26) and (27), we require

C(q − p4)N
−(q−p4)
0 <

N−(q+p1)/2
0√

K1
,

which holds for N0 large enough as long as

q − p4 > (q + p1)/2, which is q > 2p4 + p1, (28)

and which is guaranteed by (22).
Finally we recall that at each iteration step, the set Nm of near-resonant θ

values was excluded. Thus the iteration is defined only for θ /∈ ∪Nm, which
by (A5), (25) has measure

µ
(

⋃

Nm

)

≤
∑

µ(Nm) ≤
∑

K5N
−p5

m = C(p5)K5N
−p5

0 .

Thus, according to (19), we will retain a set of positive measure in the limit
provided

C(p5)K5N
−p5

0 <
K1

C0
Np1

0 α.

Thus in choosing α, we require (26), (27) and

C0C(p5)K5

K1
N−(p5+p1)

0 < α,

so α can be consistently chosen if N0 is large enough and

p5 + p1 > (q + p1)/2, that is q < p1 + 2p5,

and which together with (28) requires p4 < p5, which is the remaining
condition in (17).

Here we have chosen α depending on the value of N0; evidently for fixed
α small enough, we can instead choose N0 so that the same conditions
are satisfied. By doing so, we get convergence for α small enough. This
completes the proof of the theorem. !
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