Skip to main content
Log in

Efficient Nonsmooth Nonconvex Optimization for Image Restoration and Segmentation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, we introduce variational image restoration and segmentation models that incorporate the \(L^1\) data-fidelity measure and a nonsmooth, nonconvex regularizer. The \(L^1\) fidelity term allows us to restore or segment an image with low contrast or outliers, and the nonconvex regularizer enables homogeneous regions of the objective function (a restored image or an indicator function of a segmented region) to be efficiently smoothed while edges are well preserved. To handle the nonconvexity of the regularizer, a multistage convex relaxation method is adopted. This provides a better solution than the classical convex total variation regularizer, or than the standard \(L^1\) convex relaxation method. Furthermore, we design fast and efficient optimization algorithms that can handle the non-differentiability of both the fidelity and regularization terms. The proposed iterative algorithms asymptotically solve the original nonconvex problems. Our algorithms output a restored image or segmented regions in the image, as well as an edge indicator that characterizes the edges of the output, similar to Mumford–Shah-like regularizing functionals. Numerical examples demonstrate the promising results of the proposed restoration and segmentation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Alliney, S.: A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans. Signal Proc. 45(5), 913–917 (1997)

    Article  Google Scholar 

  2. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via \(\gamma \)-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Bollettino dellUnione Matematica Italiana B(7)(6), 105–123 (1992)

  4. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, vol. 147, 2nd ed. Springer, Berlin (2006)

  5. Bertelli, L., Chandrasekaran, S., Gibou, F., Manjunath, B.: On the length and area regularization for multiphase level set segmentation. Int. J. Comput. Vis. 90(3), 267–282 (2010)

    Article  Google Scholar 

  6. Besag, J.E.: Digital image processing: towards bayesian image analysis. J. Appl. Stat. 16(3), 395–407 (1989)

    Article  Google Scholar 

  7. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  8. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake models. J. Math. Imaging Vis. 28(2), 151–167 (2007)

    Article  MathSciNet  Google Scholar 

  9. Candès, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted \(l_1\) minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chan, T., Esedoglu, S.: Aspects of total varation regularized l1 function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chan, T., Sandberg, B., Vese, L.: Active contours without edges for vector-valued images. J. Vis. Comm. Image Repr. 11(2), 130–141 (2000)

    Article  Google Scholar 

  13. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Proc. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  14. Charbonnier, P., Féraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image. Proc. 6(2), 298–311 (1997)

    Article  Google Scholar 

  15. Daubechies, I., Devore, R., Fornasier, M., Gntrk, C.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1–38 (2010)

    Article  MATH  Google Scholar 

  16. Esser, E.: Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split-Bregman. UCLA CAM Report 09-31 (2009)

  17. Geman, D., Reynolds, G.: Constrained restoration and recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14(3), 367–383 (1992)

    Article  Google Scholar 

  18. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Proc. 4(7), 932–946 (1995)

    Article  Google Scholar 

  19. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributinons, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  20. Gibou, F., Fedkiw, R.: Fast hybrid k-means level set algorithm for segmentation. In: Proceeding of the 4th Annual Hawaii International Conference on Statistics and Mathematics (2005)

  21. Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45(1–3), 272–293 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Han, Y., Feng, X., Baciu, G., Wang, W.: Nonconvex sparse regularizer based speckle noise removal. Pattern Recogn. 46(3), 989–1001 (2013)

    Article  Google Scholar 

  24. Han, Y., Wang, W., Feng, X.: A new fast multiphase image segmentation algorithm based on nonconvex regularizer. Pattern Recogn. 45(1), 363–372 (2012)

    Article  MATH  Google Scholar 

  25. Jung, M., Kang, M., Kang, M.: Variational image segmentation models involving non-smooth data-fidelity terms. J. Sci. Comput. 59(2), 277–308 (2014)

  26. Li, S.: Markov Random Field Modeling in Computer Vision, 1st edn. Springer, New York (1995)

    Book  Google Scholar 

  27. MacQueen: Some methods for classification and analysis of multivariate observation. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

  28. Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proceedings of the IEEE International Conference on Acoust, Speech Signal Processing, pp. 22–26 (1985)

  29. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. XLVII, 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  30. Nikolova, M.: Markovian reconstruction using a gnc approach. IEEE Trans. Image Process. 8(9), 1204–1220 (1999)

    Article  Google Scholar 

  31. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. SIAM J. Numer. Anal. 40(3), 965–994 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  33. Nikolova, M.: Weakly constrained minimization. Application to the estimation of images and signals involving constant regions. J. Math. Imaging Vis. 21(2), 155–175 (2004)

    Article  MathSciNet  Google Scholar 

  34. Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. SIAM J. Multiscale Model. Simul. 4(3), 960–991 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Nikolova, M., Chan, R.: The equivalence of half-quadratic minimization and the gradient linearization iteration. IEEE Trans. Image Proc. 16(6), 1623–1627 (2007)

    Article  MathSciNet  Google Scholar 

  36. Nikolova, M., Ng, M.K., Tam, C.P.: Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. IEEE Trans. Image Proc. 19(12), 3073–3088 (2010)

    Article  MathSciNet  Google Scholar 

  37. Nikolova, M., Ng, M.K., Zhang, S., Ching, W.: Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 1(1), 2–25 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: An iterated \(\ell _1\) algorithm for non-smooth non-convex optimization in computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)

  39. Perona, P., Malik, J.: Scale-space and edge detction using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  40. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 629–639 (1990)

    Article  Google Scholar 

  41. Potts, R., Domb, C.: Some generalized order-disorder transformations. In: Mathematical Proceedings of the Cambridge Philosophical Society, pp. 106–109 (1952)

  42. Robini, M., Lachal, A., Magnin, I.: A stochastic continuation approach to piecewise constant reconstruction. IEEE Trans. Image Proc. 16(10), 2576–2589 (2007)

    Article  MathSciNet  Google Scholar 

  43. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  44. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  45. Setzer, S.: Operator splittings, bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92(3), 265–280 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  46. Shah, J.: A common framework for curve evolution segmentation and anisotropic diffusion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Eecognition, pp. 136–142 (1996)

  47. Teboul, S., Féraud, L., Aubert, G., Barlaud, M.: Variational approach for edge-preserving regularization using coupled pde’s. IEEE Trans. Image Proc. 7(3), 387–397 (1998)

    Article  Google Scholar 

  48. Vese, L., Chan, T.: Reduced Non-convex Functional Approximations for Image Restoration & Segmentation. UCLA CAM report 97-56 (1997)

  49. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  50. Vogel, C., Oman, M.: Fast robust total variation based reconstruction of noisy, blurred images. IEEE Trans. Image Proc. 7(6), 813–824 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  51. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  52. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  53. Yuille, A.L., Rangarajan, A.: The concave-convex procedure. Neural Comput. 15, 915–936 (2003)

    Article  MATH  Google Scholar 

  54. Zach, C., Gallup, D., Frahm, J., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Vision, Modeling, and Visualization, pp. 243–252 (2008)

  55. Zhang, T.: Analysis of multistage convex relaxation for sparse regularization. J. Mach. Learn. Res. 11, 1081–1107 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Miyoun Jung was supported by Hankuk University of Foreign Studies Research Fund of 20141166001. Myungjoo Kang was supported by the Basic Science Research Program (2013-025173) through the National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyoun Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, M., Kang, M. Efficient Nonsmooth Nonconvex Optimization for Image Restoration and Segmentation. J Sci Comput 62, 336–370 (2015). https://doi.org/10.1007/s10915-014-9860-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9860-y

Keywords

Navigation