Skip to main content
Log in

Fast Explicit Integration Factor Methods for Semilinear Parabolic Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, an explicit numerical method and its fast implementation are proposed and discussed for the solution of a wide class of semilinear parabolic equations including the Allen–Cahn equation as a special case. The method combines decompositions of compact spatial difference operators on a regular mesh with stable and accurate exponential time integrators and efficient discrete FFT-based algorithms. It can deal with stiff nonlinearity and both homogeneous and inhomogeneous boundary conditions of different types based on multistep approximations and analytic evaluations of time integrals. Numerical experiments demonstrate effectiveness of the new method for both linear and nonlinear model problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allen, S., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1084–1095 (1979)

    Article  Google Scholar 

  2. Chen, L.-Q., Shen, J.: Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108, 147–158 (1998)

    Article  MATH  Google Scholar 

  3. Cox, S., Matthews, P.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Du, Q., Zhu, W.-X.: Stability analysis and applications of the exponential time differencing schemes and their contour integration modifications. J. Comput. Math. 22, 200–209 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Du, Q., Zhu, W.-X.: Analysis and applications of the exponential time differencing schemes. BIT Numer. Math. 45, 307–328 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature. I. J. Differ. Geom. 33, 635–681 (1991)

    MATH  MathSciNet  Google Scholar 

  8. Feng, X., Prohl, A.: Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94, 33–65 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley-Interscience, New York (1996)

    Google Scholar 

  10. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kessler, D., Nochetto, R.H., Schmidt, A.: A posteriori error control for the Allen–Cahn problem: circumventing Gronwall’s inequality. Math. Model. Numer. Anal. 38, 129–142 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203, 72–88 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Loan, C.V.: Computational Frameworks for the Fast Fourier Transform. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  15. Li, Y., Lee, H.-G., Jeong, D., Kim, J.: An unconditionally stable hybrid numerical method for solving the Allen–Cahn equation. Comput. Math. Appl. 60, 1591–1606 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. de Mottoni, P., Schatzman, M.: Geometrical evolution of developed interfaces. Trans. Am. Math. Soc. 347, 1533–1589 (1989)

    Article  Google Scholar 

  17. Nie, Q., Wan, F., Zhang, Y.-T., Liu, X.-F.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227, 5238–5255 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nie, Q., Zhang, Y.-T., Zhao, R.: Efficient semi-implicit schemes for stiff systems. J. Comput. Phys. 214, 521–537 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang, D., Zhang, L., Nie, Q.: Array-representation integration factor method for high-dimensional systems. J. Comput. Phys. 258, 585–600 (2014)

    Article  MathSciNet  Google Scholar 

  20. Wiegmann, A.: Fast Poisson, Fast Helmholtz and fast linear elastrostatic solvers on rectangular parallelepipeds, Lawrence Berkeley National Laboratory, Paper #LBNL-43565, (1999)

  21. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yang, X., Feng, J., Liu, C., Shen, J.: Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comput. Phys. 218, 417–428 (2007)

    Article  MathSciNet  Google Scholar 

  23. Zhang, L.-B.: Un schéma de semi-discrétisation en temps pour des systèmes différentiels discretises en espace par la méthode de Fourier résolution numérique des équations de Navier-Stokes stationnaires par la méthode multigrille, Ph.D. Dissertation, Universit Paris-Sud XI (1987)

  24. Zhang, J., Du, Q.: Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit. SIAM J. Sci. Comput. 31, 3042–3063 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Ju.

Additional information

L. Ju’s research is partially supported by the US National Science Foundation under Grant Number DMS-1215659 and the U.S. Department of Energy under Grant Number DE-SC0008087-ER65393. J. Zhang’s research is partially supported by the Natural Science Foundation of China under Grant Numbers 11271350 and 91130019. L. Zhu’s research is partially supported by the Natural Science Foundation of China under Grant Number 91130019, ISTCP of China under Grant Number 2010DFR00700, China Fundamental Research of Civil Aircraft under Grant Number MJ-F-2012-04, and the State Key Laboratory of Software Development Environment under Grant Number SKLSDE-2014ZX-03. Q. Du’s research is partially supported by the US National Science Foundation under Grant Number DMS-1318586.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, L., Zhang, J., Zhu, L. et al. Fast Explicit Integration Factor Methods for Semilinear Parabolic Equations. J Sci Comput 62, 431–455 (2015). https://doi.org/10.1007/s10915-014-9862-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9862-9

Keywords

Mathematics Subject Classification (2000)

Navigation