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Abstract This paper presents an algorithm for parameter range reduction in
systems of ordinary differential equations. Parameter values are assumed only
to be known to lie in potentially large regions of parameter space. Interval
arithmetic and a family of monotonic discretizations are used to prune regions
of parameter space that are inconsistent with given time series data. The algo-
rithm is tested on two ordinary differential equation models and the reduced
ranges are shown to significantly improve the performance of traditional pa-
rameter estimation methods.
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1 Introduction

Given a system of ordinary differential equations (ODEs) that models some
physical process, we are interested in the inverse problem of identifying an ap-
propriate set of parameter values from time series data. We will, in particular,
be concerned with models of the form

x′ = f(t, x, λ), x ∈ Rm, λ ∈ Rq, (1)

where the model parameters, λ, are to be determined from time series data
of the form S = {(tnobs, xnobs)}Nn=1. We denote the observation time window
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Iobs = [t1obs, t
N
obs] and for a fixed λ, the solution to (1) passing through the

initial point (τ, ξ) as x(t, τ, ξ, λ).
Parameter identification in this context is typically accomplished by se-

lecting a set of initial parameter values, numerically integrating the model
equations and comparing the result to the time series data. A cost function,
such as weighted least squares, is used to measure the suitability of these pa-
rameters. Using estimates of how the cost function varies with the parameters,
new parameter values are chosen until the cost function is hopefully minimized.

It is often the case that little is known a priori about the parameter values,
thus making an initial selection difficult. If the initial selection must be made
from a very large region of parameter space, it is possible that this selection will
result in a system that cannot be numerically integrated over the desired time
window. If the cost function has multiple local minima, or large flat regions
in parameter space, it may be difficult for the procedure to converge to a
reasonable minimum. To combat this problem, one could employ a multistart
method [12] in which a large number of initial parameter selections are made
and the results are analyzed to identify a global minimizer. An alternative is a
simulated annealing method [2] in which the algorithm attempts to efficiently
explore as much of parameter space as possible. A variety of global methods
are compared in [1,3,6]. In all cases, significant computational time is spent
numerically integrating the model equations. It is useful to be able to reduce
the size of the parameter space each method is required to search.

This paper presents an improvement on a parameter range reduction method
first introduced in [13,14]. The algorithm discretizes the model equations and
uses these discretizations to quickly prune regions of parameter space that
are deemed to be inconsistent with the data. The final result is a collection
of boxes from which a better initial parameter selection can be made. The
method in [13,14] required that the discretization over a given time window
be monotonic with respect to each parameter. We relax here this condition
and show that it results in a smaller region of parameter space that fails to be
inconsistent. For simplicity, we will refer to such regions as consistent regions.

The remainder of this paper is organized as follows. In Section 2, we provide
a brief summary of interval arithmetic and present some theorems that will
allow for better and more efficient parameter range reduction. In Section 3, we
discuss the theory and structure of the algorithm itself. In Section 4, we present
experimental results obtained from two ODE models and show the effect of
reduced parameter ranges on traditional parameter estimation schemes.

2 Interval Arithmetic and Notation

We now briefly introduce some concepts in interval arithmetic. More detailed
and complete reviews of interval analysis can be found in [4,7–9]. In this paper,
interval-valued quantities will be denoted with a bold typeface, while under
and over bars will denote respectively the lower and upper endpoints of an
interval. If a = [ a ,a ] and b =

[
b ,b

]
and • denotes any of the operators
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+,−,×,÷, then we can define elementary interval arithmetic as

a • b = {a • b : a ∈ a, b ∈ b}.

This definition is equivalent to the following:

a + b =
[

a + b ,a + b
]
,

a− b =
[

a− b ,a− b
]
,

a× b =
[

min{a b,a b,a b,a b} ,max{a b,a b,a b,a b}
]
,

a÷ b = [ a ,a ]×
[

1

b
,

1

b

]
, if 0 /∈ b.

Elementary functions can likewise be defined over intervals [4]. If n is a non-
negative integer, for example, we can define

an =


[1, 1] if n = 0,

[ an,a n ] if a ≥ 0, or n is odd,

[ a n,an ] if a ≤ 0, and n is even,

[ 0,max( an,a n ) ] if a ≤ 0 ≤ a, and n > 0 is even.

Given a function f : D ⊂ x → R, we wish to determine an interval that
encloses as tightly as possible the set Range(f ;D) = {f(x) : x ∈ D}. There are
many sophisticated interval range enclosure methods [9], but for our purposes
we will require only the use of natural interval extensions, that are obtained
by substituting all occurrences of each argument of f with its interval-valued
equivalent. An interval-valued enclosure of the range of a function will be
denoted F : x→ I. We will denote the upper and lower endpoints of I respec-
tively by F(x) and F(x). If f is a sufficiently nice function, it has been shown
that interval extensions satisfy the property of inclusion isotonicity [7], that
is,

Range(f ; x) ⊆ F(x).

If Range(f ; x) = F(x), then the interval enclosure F is said to be sharp.
Consider, for example, the function f : [0, 2] → R given by f(x) = x − x2. It
is easy to show that the range of this function is Range(f ; [0, 2]) =

[
−2, 14

]
.

Using the natural interval extension F(x) = x− x2, it can be see that

Range(f ; [0, 2]) ⊂ F([0, 2]) = [0, 2]− [0, 2]2 = [0, 2]− [0, 4] = [−4, 2].

This interval enclosure is not sharp because of the dependency problem; the two
instances of x are incorrectly treated as independent. We can, however, obtain
sharpness by considering an alternate form of f . Using the natural interval

extension of the alternate form g(x) = −
(
x− 1

2

)2
+ 1

4 , it can be seen that

Range(g; [0, 2]) = G([0, 2]) = −
(

[0, 2]− 1

2

)2

+
1

4
=

[
−9

4
,

3

4

]
+

1

4
=

[
−2,

1

4

]
.
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Since alternate forms of the same expression can give different results when
extended to intervals, it is very important to consider the form of the original
equation before applying an interval extension. The following theorems give
useful conditions for determining if an interval enclosure will be sharp.

Theorem 1 [7] An interval enclosure F(x), obtained from a natural interval
extension, is sharp if and only if both F and F are computed in terms of a
single endpoint of each of the variables on which F depends.

Theorem 2 [4] If F is monotonically nondecreasing or nonincreasing with
respect to each argument, then a sharp enclosure F can be calculated by evalu-
ating the function F at the appropriate end points of each interval argument.

We will make frequent use of this monotonicity test. In addition to providing
sharpness, establishing monotonicity can significantly decrease the computa-
tional time of the algorithm. In this case, the values of F and F must be
calculated independently, but do not require the use of interval arithmetic.
We note that any checks of monotonicity must be made over the entire range
of values in each interval-valued argument. Any partial derivatives used in this
analysis are therefore also interval extensions and may themselves fail to be
sharp, which can lead to pessimistic results. It is, however, often the case that
establishing monotonicity is not a necessary condition for sharpness.

Theorem 3 [7] If each variable on which F depends appears only once in the
expression, then the enclosure F, obtained from a natural interval extension,
is sharp.

When we are constructing interval extensions, it is therefore useful to con-
sider alternate rearrangements in which each interval-valued quantity, espe-
cially those for which monotonic properties cannot be established, appears
only once in the given expression. In some cases, such a rearrangement will
not be possible, but factoring is in general always beneficial.

Definition 1 [7] The interval arithmetic addition and multiplication opera-
tors are sub-distributive. That is, x(y + z) ⊆ xy + xz.

The lesson to be learned is that the algebraic structure of any expression
must be carefully considered before extending it to interval arithmetic if tight
enclosures are desired.

3 Parameter Range Reduction

In this section, we outline the parameter range reduction scheme. We first
discuss the family of discretizations used by the scheme and their interval
extensions. We then discuss monotonicity tests that enable our interval exten-
sions to be as sharp as possible. We then discuss the main test used by the
scheme and finally, we outline the structure of the algorithm.
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The algorithm requires as input an ordinary differential equation model,
initial parameter ranges and a range for each model variable at every time
t ∈ Iobs. It is assumed that the true value of each parameter lies within its
initial range, that may be as wide as (−∞,+∞) if no a priori information is
known. Converting the discrete time series datas to a continuous representation
may be accomplished using a variety of methods. In this paper, we use an
algorithm presented in [10] that replaces time series data with a continuous
piecewise linear band that encloses all data points. The results of the range
reduction algorithm depend on the representation and thus on what the user
thinks is a valid continuous representation that encloses the true solution.

3.1 Discretizations

The algorithm will make use of a specific family of linear multistep discretiza-
tions. In [14], it was shown that the best discretization formulae for parameter
range reduction were called A1OUT discretizations, whose form is

F (t0, h, s;x0, x1, . . . , xs, λ) := x0 − xs + h

s∑
i=0

βif
i, (2)

where h > 0 is the constant step size, s is the number of steps in the dis-
cretization, each xi = [xi1, . . . , x

i
m]T is an independent variable in Rm and

represents an approximation to the solution x(ti, τ, ξ, λ) of the ODE at time
ti = t0 + ih, and f i = f(ti, xi, λ). The time interval [t0, ts] will be referred to
as the discretization window. Superscripts are used to denote time indices and
subscripts to denote spatial indices. For readability, we will often drop the first
three arguments of F , when it is not necessary to emphasize this dependence.
The βi coefficients in equation (2) are chosen using the following criteria:

1. βi ≥ 0, 0 ≤ i ≤ s, (monotonicity),
2. βi = βs−i, 0 ≤ i ≤ b s2c, (symmetry),
3. βi are chosen to maximize the order of the discretization and, if this does

not uniquely identify them, they are chosen to minimize the error constant
as defined in [14].

A table of βi values for 1 ≤ s ≤ 17 can be found in [14] with details of their
derivation.

The natural interval extension of (2) is given by

F(t0, h, s; x0,x1, . . . ,xs,λ) := x0 − xs + h

s∑
i=0

βif
i,

where λ := λ1×λ2×· · ·×λq is the Cartesian product of the parameter intervals
(the parameter box), and f i = f(ti,xi,λ) is the natural interval extension of
f i. Each xi is determined from the continuous representations of the time
series data and for simplicity, we will often write x := x0, . . . ,xs. To obtain a
sharper result, we may consider alternate rearrangements of F before deriving
the natural interval extension.
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3.2 Monotonicity

To ensure that our interval extension is as sharp as possible, we attempt to
make use of as many monotonicity properties as possible. The monotonicity
property of the A1OUT discretization family allows us to make the following
statement [14]. If some component of the vector field, fj , 1 ≤ j ≤ m, is mono-
tonically nondecreasing with respect to some parameter λk over some set Ω
in (t, x, λ)-space, then this monotonicity is inherited by the discretization Fj .
That is,

∂fj
∂λk

(t, x, λ) ≥ 0, ∀(t, x, λ) ∈ Ω =⇒ ∂Fj
∂λk

(t0, h, s;x0, . . . , xs, λ) ≥ 0, ∀(t0, h, s),

provided that (ti, xi, λ) ∈ Ω, ∀i ∈ {0, . . . , s}. A similar statement is true if f is
monotonically non-increasing. The required partial derivatives can be quickly
computed over all parameter and variable values in their respective intervals,
so we use this as a first test of monotonicity.

It is possible, however, that the vector field fails to be monotonic, yet the
discretization applied to a specific discretization time window is monotonic.
Consider for example an ODE of the form x′1 = f1(x1, x2, λ1) = λ1x2. Since
∂f1
∂λ1

= x2, monotonicity with respect to λ1 cannot be established if our contin-
uous representation of x2 spans zero at some time in the discretization window.
If we consider the discretization of f1, however, we can see that

∂F1

∂λ1
(t0, h, s;x1, x2, λ) = h

s∑
i=0

βix
i
2.

The interval extension of this partial derivative may not span zero, even if
some individual xi

2 does span zero.
The discretization equation (2) may also depend on some of the m(s+ 1)

quantities xij , where 1 ≤ j ≤ m and 0 ≤ i ≤ s. Since time-indexed variable
quantities do not appear in (1), we may only establish monotonicity properties
with respect to variables in the discretization equation (2). Consider as an ex-
ample an ODE of the form x′1 = f1(x1, x2, λ) = λx1−x2 and its corresponding
discretization F1. To establish monotonicity with respect to xi1, we consider
the partial derivative

∂F1

∂xi1
= −αi + hβiλ,

where

αi =


−1 if i = 0

1 if i = s

0 otherwise

.

If βi = 0, F1 is trivially monotonic with respect to xi1. If βi 6= 0, F1 is non-
monotonic with respect to xi1 if αi

hβi
∈
[
λ ,λ

]
. Even if this is the case, we

may still be able to obtain a useful monotonic property. If we have previously
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established, for example, that F1 is monotonically non-decreasing with respect
to λ over our discretization widow, then F1 is explicitly dependent on λ and

∂F1

∂xi1
= −αi + hβiλ < 0,

thus establishing monotonicity with respect to xi1 for the determination of F1.

A similar analysis would hold when calculating F1. Establishing monotonicity
with respect to as many interval-valued quantities as possible results in a
sharper bound on the interval extension. It also reduces computational expense
when calculating the maximum and minimum values of the vector field over a
given discretization time window.

3.3 Inconsistency Test

The core of the parameter range reduction algorithm is the following test. For
a given vector field equation fj , 1 ≤ j ≤ m and corresponding discretization
Fj over some discretization window [t0, ts], we can calculate bounds for the
enclosure [Fj(x,λ),Fj(x,λ)]. If this interval does not intersect [−E,E], where

E = |F (x(t0, τ, ξ, λ), . . . , x(ts, τ, ξ, λ), λ)|

is the magnitude of the local discretization error of (2), then all parameter
values λ ∈ λ are inconsistent with the data and can be discarded. In practice,
it is impossible to determine E, since it depends on the true solution of the
ODE, that in turn depends on the true parameter values. In [14], the authors
concluded that the error in the data, represented in the discretization equation
by the interval-valued variables drawn from the continuous representation,
tends to dominate the discretization error. In our implementation, we have
allowed the user to specify an approximate value for E if the user has any
available information. If the variable ranges are relatively wide, then this value
may be set to zero, as we have done in each of our examples below.

3.4 Algorithm Outline

The general outline of the parameter range reduction scheme to reduce a single
q-dimensional box in parameter space is described below.

1: while progress on reducing box is being made do
2: for each set of discretization parameters t0, h, s do
3: for each model equation x′j = fj(t, x, λ), j = 1, . . . ,m do
4: compute Fj(X,λ)

5: if Fj(X,λ) > E then
6: parameter box is inconsistent return
7: else
8: for each parameter λk, k = 1, . . . , q do
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9: if Fj(X,λ)
∣∣∣
λk=[λk,λk]

> E then

10: determine max. λ′k such that Fj(X,λ)
∣∣∣
λk=[λk,λ′

k]
> E

11: update λk = [λ′k,λk]
12: end if
13: if Fj(X,λ)

∣∣∣
λk=[λk,λk]

> E then

14: determine min. λ′k such that Fj(X,λ)
∣∣∣
λk=[λ′

k,λk]
> E

15: update λk = [λk, λ
′
k]

16: end if
17: end for (each parameter)
18: end if (inconsistency test)
19: repeat steps 4 to 18 replacing inequality with Fj < −E
20: end for (each equation)
21: end for (each discretization window)
22: end while (progress)

If Fj is monotonically non-decreasing (or non-increasing) with respect to λk,
then we need only complete lines 9-12 (or 13-16), since the value of F will have
been attained at λk (or λk). The search performed in steps 10 and 14 uses
an iterative secant method combined with a bisection method. We do not find
the actual maximum or minimum, but rather an approximation within some
tolerance. It is at this step of the algorithm that obtaining sharpness of the
interval extension is most beneficial.

While looping through discretization parameters (line 2), the algorithm
typically fixes s and h and changes only the time window [t0, ts]. The imple-
mentation of the program does, however, allow the user to specify a range of
s and h values from which the algorithm can choose.

The procedure above describes how to reduce a single parameter box. Once
the algorithm has determined that no further progress can be made, it splits
the current parameter box along its widest edge and repeats the above pro-
cedure on each of the smaller boxes. A cap on the total number of boxes
is provided by the user. The algorithm outputs all consistent boxes as well
as the convex hull and centre of mass of these boxes. These last two values
can be used to inform the initial guesses for traditional parameter estimation
methods.

4 Results

To demonstrate the effectiveness of the algorithm, we first consider a two-
dimensional nonlinear pendulum system with three parameters. The data were
simulated by numerically integrating with a true parameter set, obtaining a
dense set of sample data points and adding a low level of noise. We then con-
sider a four-dimensional pharmacokinetic model with seven parameters. The
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data for this model are sparse and were obtained from a real-world experiment.
The true parameter values for this second model are unknown.

4.1 Nonlinear pendulum

If a nonlinear pendulum of length L and mass m, with damping coefficient a
is exposed to a sinusoidal force of magnitude b at frequency ω, its motion can
be modelled by

x′ = y, (3)

y′ = − g
L

sin(x)− a

m
y +

b

mL
sin(ωt). (4)

It is assumed that b = 1.4, ω = 2 and the gravitational constant g = 9.8 are
known exactly. The problem is to determine the parameters L,m, a from time
series data. We chose true parameters L = 0.5,m = 0.6, a = 0.05 and the
system was integrated for 100 seconds with an initial condition vector [3, 0]T .
Data were sampled at intervals of 0.1 seconds. We added to the sample data
normally distributed noise with a standard deviation equal to one-percent of
the maximum amplitude of each variable. Continuous bands for the data were
generated by the algorithm described in [10] and are plotted in Figure 1.

0 20 40 60 80 100
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0
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time
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Detail at t = 40.0
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Detail at t = 55.0

Fig. 1: Simulated data for the nonlinear pendulum and continuous bands gen-
erated by the algorithm described in [10] using tmin = 0.18 and min height =
0.15 for x and using using tmin = 0.18 and min height = 0.40 for y.
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Table 1: Results for the nonlinear pendulum. The algorithm was tested for all
values of s between 2 and 17 and for values of h between 0.05 and 1.00 in
increments of 0.05. For each (s, h)-pair, results were averaged over 10 runs.
The result with the lowest ratio of output hull volume to original volume in
parameter space is presented below.

L m a Max boxes

Original [0.005, 50] [0.006, 60] [0.0005, 5] -
Best Hull ([14]) [0.426, 0.623] [0.274, 1.84] [0.0005, 1.26] 10000
Best Hull (transformed) [0.466, 0.529] [0.452, 0.843] [0.0005, 0.309] 50
Best Hull (original) [0.467, 0.529] [0.445, 0.806] [0.0005, 0.292] 50
Centre of Mass (original) 0.498 0.602 0.118 -

The natural interval extension of the discretization of equation (4) is

F2 = y0 − ys + h

s∑
i=0

βi

(
− g

L
sin(xi)− a

m
yi +

b

mL
sin(ωti)

)
.

This expression contains multiple instances of the interval-valued quantities
L,m,a,y0, and ys, so the output of this function is unlikely to be tight. If
instead we rewrite the interval-valued discretization equation as

F2 = y0 − ys − h

L

(
g

s∑
i=0

βi sin(xi)− 1

m

s∑
i=0

βi sin(ωti)

)
− ha

m

s∑
i=1

βiy
i.

then the only interval-valued quantities that are repeated are y0, ys and m.
It can be seen, however, that since a and m are always positive, F2 is mono-
tonically decreasing with respect to ys for all parameter and variable values,
so the only impediments to sharpness are y0 and m.

In [14,13], the authors defined new parameters A = 1
L , B = a

m , C = 1
mL ,

that transformed equation (4) to

y′ = −gA sin(x)−By + Cb sin(ωt). (5)

This transformed model had significantly better monotonicity properties with
respect to A,B,C than the original model had with respect to L,m, a. When
the algorithm was allowed only to process discretization windows on which
the discretization equation was monotonic with respect to all parameters,
these improved monotonicity properties were advantageous. This improved
monotonicity, however, comes at a cost, since the initial transformed param-
eter ranges must be inflated to enclose the original parameter values. Once
a final set of valid parameter boxes is obtained, they are inflated again to
transform back to the original parameters using the inverse transformation
L = 1

A ,m = A
C , a = AB

C . Since the new algorithm can process discretization
windows on which F is not strictly monotonic, this transformation does not
provide as great an advantage.
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Table 1 presents results obtained using the updated algorithm. It can be
seen that the new algorithm presented in this paper resulted in a significantly
better parameter range reduction than obtained using the algorithm in [14].
This improvement also uses far fewer boxes and thus less computational time.
The original model performs as well or slightly outperforms the transformed
model in all cases except the lower bound of m. This suggests that while the
transformation was not necessary in this case, it is a potentially useful strategy
that should not be discarded.

The best results in Table 1 were obtained after 1.57 seconds for the original
model and 2.30 seconds for the transformed model. Simulations were run on
a 2.4 GHz Intel Core i5 processor.
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Fig. 2: Hull of consistent boxes and centre of mass versus s for step size
h = 0.05. In each plot, the upper and lower solid curves represent the up-
per and lower values of the hull of consistent boxes. The middle solid curve
represents the centre of mass of all consistent boxes. The dashed horizontal
line represents the true parameter value. Plots on the left are results from
when only monotonic windows are allowed, while plots on the right represent
results from the improved scheme.

Another advantage to the updated algorithm is illustrated in Figure 2.
The plots show the hull of all consistent boxes and the centre of mass of all
consistent boxes for each model parameter for the original model for a fixed
h = 0.05 and a range of s values. The plots on the left show the results
when only monotonic windows are permitted. It can be seen that significant
reductions in the ranges of m and a occur for narrow (and parameter-specific)
ranges of s-values. The plots on the right show that for wide regions of s-
values, consistently good results are obtained and that the centre of mass is a
good initial guess for a traditional parameter estimation algorithm. This result
also occurs when s is fixed and h is allowed to vary over a range of reasonable
values. We conclude that the reduction scheme in this paper is less sensitive
to the choices of s and h. This is a nice property since the user must select



12

Table 2: Comparison of the effect of parameter range reduction on input to
traditional optimization methods. The original parameter ranges and centres
of mass, and the reduced parameter ranges and centres of mass, were each
input into five traditional optimization methods. The five methods were the
MATLAB functions (A) fminsearch, (B) GlobalSearch, (C) MultiStart,
(D) patternsearch, (E) sumulannealbnd. The final value of the least squares
cost function and the total run time are also presented. Time measurements
are in clock seconds on a 2.4 GHz Intel Core i5 processor.

Initial Optimization Method
Range Start A B C D E

O
ri

g
in

a
l L [0.005, 50] 25.0025 1.85 0.57 0.51 5.86 0.54

m [0.006, 60] 30.003 48.84 3.31 1.63 4.95 6.79
a [0.0005, 5] 2.50025 25.65 0.82 3.82 5.00 1.33

Cost - - 3318 1370 2773 3489 1258
time - - 117 1927 1080 116 2807

R
ed

u
ce

d

L [0.467, 0.529] 0.498 0.50 0.50 0.50 0.49 0.50
m [0.445, 0.806] 0.60 0.65 0.62 0.61 0.56 0.65
a [0.0005, 0.292] 0.118 0.058 0.053 0.054 0.046 0.057

Cost - - 30 27 38 32 28
time - - 45 1229 880 113 1121

an s and h value (or range of values) with limited information to guide their
choice.

In addition to the improvements made in this paper to the parameter range
reduction algorithm, we also switched from using the banding algorithm in [11]
to the banding algorithm in [10]. To differentiate between the improved results
obtained by the modifications to the parameter range reduction algorithm
and those obtained by changing the banding algorithm, we also tested the
algorithm in this paper with the prior banding algorithm. We obtained the
best reductions L = [0.432, 0.559],m = [0.381, 1.23] and a = [0.0005, 0.7383].
Comparing this to the results in Table 1, we can see that while significant
improvements can be obtained by using better data bands, this accounts only
for a portion of the range reduction improvements.

As a measure of the usefulness of the reduced parameter ranges and cen-
tre of mass approximations, we conducted traditional parameter estimation
searches on this problem and data. We gave as input the a priori ranges
and midpoints to each of 5 MATLAB optimization routines: fminsearch,
GlobalSearch, MultiStart, patternsearch and sumulannealbnd. We then
gave as input the reduced parameter hull as bounds and centre of mass as an
initial guess to the same optimization routines. In all cases, we used a least
squares cost function and all default function settings. The results are pre-
sented in Table 2. In each case, the optimization routine was unable to locate
a minimum close to the true parameter values, when given as input the initial
a priori ranges. When given the reduced ranges, all five algorithms were able to
locate a reasonable minimum and in some cases, was able to do so in less time.
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We note that this was not intended as a comparison between optimization
methods since we used only default settings.

4.2 Pharmacokinetic model

The following model and corresponding data were taken from [5, pg. 152] and
originally attributed to Nicholas Holford of the Department of Pharmacology
and Clinical Pharmacology at the University of Auckland as a challenge to
mathematical modellers. Assume that a patient is orally given Dtotal = 48.15
milligrams of a drug and the drug is absorbed into the blood stream at a
constant rate for the first ET hours. Therefore, the amount of drug that has
entered the system after t hours is given by

I(t) =

{
Dtotalt
ET

if 0 ≤ t ≤ ET ,
Dtotal if ET ≤ t.

Blood concentrations of the drug, Db, and of its only metabolite, Mb, are
measured (mg/l) at various times. The drug is transported between the blood
and the tissue and both the drug and metabolite leave the blood to the urine,
where cumulative amounts, Du and Mu respectively, are measured (mg), again
at various times. The mathematical model presented in [5] depends also on the
concentration of drug in the tissue. This quantity is unmeasured, but in [14],
the authors showed that this dependence can be removed. This reduces the
system to the following four equations

D′b =
I ′(t)− (k1 + µD + kM )Db + κ(I(t)−Du −Mu)

Vb
− κ(Db +Mb),

M ′b =
kMDb − µMMb

Vb
,

D′u = µDDb,

M ′u = µMMb,

where the model parameters are the rate constants k1 and k2 for the transport
of drug between the blood and tissue, the rate constant kM for metabolism of
drug in the blood stream, the constants µD and µM that determining the rate
of excretion of drug and metabolism respectively from the blood to the urine
and Vb, Vt, the effective volume of blood and tissue. The parameter κ = k2

Vt

results from the model reduction. The seventh parameter is ET , appearing in
both the expressions for I(t) and I ′(t).

Data for this model were obtained from [5, pg. 153] and consist of 15
recordings for each of the variables Db and Mb taken in non-uniform time
intervals from t = 0.82 to t = 24.57 hours and 11 recordings for each of
the variables Du and Mu taken at times distributed between t = 1.00 and
t = 72.00 hours. The data and the continuous bands used in the algorithm are
plotted in Figure 3. This model was presented as a modelling challenge due to
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Fig. 3: Pharmacological data and continuous representations. The bands for all
four data sets were obtained by the banding algorithm presented in [10]. The
bands for Db and Mb were obtained using tmin = 1.0 and minimum heights of
0.02 and 0.1 respectively, while the bands for Du and Mu were obtained using
tmin = 4.0 and minimum heights of 0.3 and 1.7 respectively.

Table 3: Results for the pharmacokinetic model. The algorithm was tested for
all values of s between 2 and 17 and for values of h between 0.06 and 1.00
in increments of 0.02. For each (s, h)-pair, results were averaged over 10 runs.
The result with the lowest ratio of output hull volume to original volume in
parameter space is presented below. Runs terminated when an upper limit of
100 boxes was reached.

Vb k1 κ kM µD µM ET

Original [3.0, 7.0] [0.01, 500] [0.01, 100] [0.01, 150] [0.01, 50] [0.01, 50] [0.1, 10]
Best Hull [3.0, 7.0] [143, 321] [0.85, 1.54] [33, 86] [6.4, 13.5] [6.2, 9.9] [0.1, 2.84]
C. of M. 5.3 238 1.17 62 9.8 8.1 1.35

the disparate scales, sparse non-uniform data and lack of a priori knowledge
of reasonable parameter values.

Results from the parameter range reduction algorithm are presented in
Table 3. The original ranges were drawn from bounds presented in [5]. It
can be seen that we obtained excellent reductions for most of the parameter
ranges. No progress, however, was made reducing the range of Vb. A cap on
the maximum number of boxes was set at 100. Increasing this value tended
not to result in an improved hull of consistent boxes, but rather resulted in a
sharpened centre of mass approximation. The best result with 100 boxes was
obtained in 12.3 seconds on a 2.4 GHz Intel Core i5 processor.

In [5], the authors analyzed the equations to provide biologically reason-
able initial parameter selections for their estimation routine. They obtained
weighted least squares cost values of 305.4944 and 44.91649 for two different
initial selections of parameter values. In Table 4, we present results obtained
from various traditional optimization packages applied to this pharmacokinetic
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Table 4: Comparison of the effect of parameter range reduction on traditional
optimization methods. The original parameter ranges and centres of mass,
and the reduced parameter ranges and centres of mass, were each inputted
into 5 traditional optimization methods. The five methods were the MAT-
LAB functions (A) fminsearch, (B) GlobalSearch, (C) MultiStart, (D)
patternsearch, (E) sumulannealbnd. The final value of the weighted least
squares cost function and the total run time are also presented. Time mea-
surements are in clock seconds on a 2.4 GHz Intel Core i5 processor.

Initial Optimization Method
Range Start A B C D E

O
ri

g
in

a
l

Vb [3.0, 7.0] 5.0 - 3.02 3.00 3.00 3.01
k1 [0.01, 500] 250.005 - 214.14 78.85 0.068 201.73
κ [0.01, 100] 50.005 - 100.00 100.00 99.78 90.78
kM [0.01, 150] 75.005 - 136.17 150.00 143.69 144.49
µD [0.01, 50] 25.005 - 25.79 28.50 27.28 26.52
µM [0.01, 50] 25.005 - 32.10 32.93 31.01 38.67
ET [0.1, 10] 5.05 - 6.38 6.44 6.42 6.48

Cost - - failed 26.3 26.0 25.9 26.5
time - - n/a 1630 700 537 642

R
ed

u
ce

d

Vb [3.0, 7.0] 5.3 2.81 4.98 3.25 3.57 3.99
k1 [143, 321] 238 240.96 308.23 265.29 246.37 221.18
κ [0.85, 1.54] 1.17 1.23 1.08 1.27 1.05 1.12
kM [33, 86] 62 50.88 77.23 54.59 61.91 52.56
µD [6.4, 13.5] 9.8 9.13 13.50 9.75 11.03 9.55
µM [6.2, 9.9] 8.1 9.75 9.90 9.57 9.86 9.69
ET [0.01, 2.84] 1.35 1.12 0.96 1.03 1.14 1.05

Cost - - 0.80 1.03 0.84 0.85 0.97
time - - 82 2011 418 288 367

model. Using the midpoints of the initial parameter ranges, we found that the
MATLAB local optimization function fminsearch was unable to converge due
to excessive stiffness of the model given the choice of parameter values. The
four global optimization functions fared slightly better, but still were unable
to obtain reasonable parameter values. In contrast, the global optimization
functions were able to converge to parameter sets with significantly smaller
cost function values when given the reduced ranges as input. The functions
MultiStart and patternsearch converged to a similar cost function value
but their output parameter sets differed in a number of values. The local opti-
mizer fminsearch (that does not accept as input variable bounds) converged
to a point outside of the a priori initial ranges. It would appear that the sys-
tem is over-parameterized. In Figure 4, we plot the projections of all consistent
boxes onto the kM−µM plane. It is clear that there is some dependency among
the parameters that should be resolved before proceeding with a parameter
estimation scheme.
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5 Conclusion

This paper considered the problem of identifying parameters in an ODE model
given time series data. The algorithm presented reduces a priori ranges of pa-
rameter values and outputs tighter bounds and a starting value for traditional
parameter estimation schemes. The algorithm is shown to be an improvement
to a previously reported version of the algorithm. The algorithm outputs re-
duced parameter ranges and centre of mass approximations that are shown to
be effective inputs to traditional parameter estimation schemes.
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Fig. 4: Projection of consistent parameter boxes. The parameter reduction
scheme was run with s = 4, h = 0.15 and with an upper limit of 2000 boxes.

The algorithm requires all model variables to be measured. In many cases,
this is not a reasonable assumption. For example, it may not be reasonable to
assume that time series data will be available for the velocity of the nonlinear
pendulum. In the case of the pharmacokinetic model, it was possible to rewrite
the differential equations to remove an unmeasured quantity, but this is not
always possible. By considering the instances of unmeasured variables in the
discretization equation to be additional parameters that can be reduced, it is
possible to obtain good parameter ranges in the presence of partial data sets.
Strong results in this line of research have been found and their details will be
reported elsewhere.
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