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A LEVEL SET APPROACH REFLECTING SHEET STRUCTURE
WITH SINGLE AUXILIARY FUNCTION FOR EVOLVING SPIRALS

ON CRYSTAL SURFACES

TAKESHI OHTSUKA, YEN-HSI RICHARD TSAI, AND YOSHIKAZU GIGA

In memory of Professor Rentaro Agemi

Abstract. We introduce a new level set method to simulate motion of spirals in a
crystal surface governed by an eikonal-curvature flow equation. Our formulation allows
collision of several spirals and different strength (different modulus of Burgers vectors) of
screw dislocation centers. We represent a set of spirals by a level set of a single auxiliary
function u minus a pre-determined multi-valued sheet structure function θ, which reflects
the strength of spirals (screw dislocation centers). The level set equation used in our
method for u − θ is the same as that of the eikonal-curvature flow equation.

The multi-valued nature of the sheet structure function is only invoked when preparing
the initial auxiliary function, which is nontrivial, and in the final step when extracting
information such as the height of the spiral steps. Our simulation enables us not only to
reproduce all speculations on spirals in a classical paper by Burton, Cabrera and Frank
(1951) but also to find several new phenomena.

1. Introduction

Consistent spiral patterns are observed in many crystal growth situations. The center
of a spiral is believed to be the location where a screw dislocation in a crystal lattice
terminates on the crystal surface, while the spiral being a step (discontinuity) in the
crystal height. Atoms bond with the crystal structure with a higher probability near a
step and thus results in an evolution of the step. The dynamics of the step in this setting
is well studied and traces back to Burton, Cabrera and Frank [BCF51].

Consider a spiral pattern drawn by steps on a growing crystal surface. In the theory of
the crystal growth in [BCF51], steps evolve with a normal velocity of the form

(1.1) V = C − κ,

where C is a constant denoting a driving force, and κ is the curvature of the curve drawn
by the steps. The equation (1.1) is sometimes called an eikonal-curvature flow equation.
In [BCF51] the equation (1.1) is given as V = v∞(1 − ρcκ) with the velocity of straight
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line steps v∞ and the critical radius ρc for the generation of two dimensional kernel
from supersaturation. The curvature term, κ, is interpreted as a result of the Gibbs-
Thompson effect. The sign of curvature is taken so that (1.1) is a parabolic equation.
Our formulation, however, includes the case of the negative driving force, i.e., when a
crystal is melting.

The spiral crystal growth problem can be studied by direct numerical simulation using
a variety of techniques. A straight forward approach is to track the spiral by putting
a set of markers on the spiral and solve the resulting system of ODEs that determine
the marker locations in time. It is also possible to use Monte-Carlo type algorithms for
simulations of small domains.

Since the spiral dynamics generally involve merging of different spirals, implicit interface
methods can be of an attractive option. A phase field model was introduced in [KP98] or
[Kob10] for spiral growth simulations. This is a diffuse interface method that requires fine
grid resolution at least in a neighborhood of the evolving spirals. Conventional level set
methods [OS88] [Set99, OF01] (see for its foundation in mathematical analysis [Gig06])
do not apply directly; in a typical level set method involving a Lipschitz function, u, as
the so-called level set function, the point set {x; u(t, x) = 0} corresponds to a curve
which divides the domain into two disjoint sets (the typical example is a closed curve by
itself or combining it and the boundary of the domain). However, a spiral generally does
not divide the domain into two disjoint sets. In [Sme00] Smereka introduced a level set
formulation to simulate a spiral crystal growth numerically. This is an interesting and
pioneering work simulation of evolving spirals. In his formulation a spiral is described
by two continuous auxiliary functions (level set functions), and the intersection of the
zero level sets of these two functions represents the spiral center (screw dislocation). The
dynamics of the spiral is computed by solving two partial differential equations (PDEs)
that contain discontinuous coefficients. The height function is computed by solving a
Poission equation with a Dirac-δ source concentrated along the spiral.

While the level set method in [Sme00] is powerful to study collision of several spirals,
it does not apply when two spiral centers have different strengths –a case in which the
crystal surface includes several screw dislocations with Burgers vectors of different mag-
nitudes. In [Oht03] the first author introduced a new level set method using only one
auxiliary function but using a sheet structure function introduced by Kobayashi [Kob10]
in 1990. The sheet structure function reflects a helical structure formed by ordered atoms
in a crystal, and thus this method enables us to describe more general situation including
multiple centers with different strengths. While the analytic foundation for this method in
[Oht03] based on viscosity solutions [Oht03] [GNO08] is well-established, numerical sim-
ulation based on this idea was not yet studied or published; among many computational
issues, the construction of initial auxiliary function is not trivial.

In this paper, we propose an algorithm for computing evolving spirals by (1.1) based on
the level set method using a sheet structure function. Our method does compute correctly
the behavior of co-rotating spirals and spirals with different rotational orientations with
possibly different strengths. We recover all speculations for spirals given by [BCF51] in
our numerical simulations. We also find several new phenomena.

Let us recall the level set method in [Oht03]. A crystal surface is to be described
in a bounded domain Ω in the plane. A screw dislocation center is assumed to be a
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closed ball of finite size in our formulation. We consider N (disjoint) screw dislocations
U1, U2, . . . , UN whose centers are denoted by a1, a2, . . . , aN , on the surface. A spiral Γt at
time t ≥ 0 lies on a domain W which is obtained from Ω by removing all screw dislocation
centers, i.e., W = Ω \

∪N
j=1 Uj. In this paper we assume that the end points of Γt always

stay on the boundary ∂W of W with the orthogonality condition,

(1.2) Γt ⊥ ∂W.

Thus, while Γt is not a closed curve, its image is a relatively closed point set in W . We
now introduce a sheet structure function θ, which is due to Kobayashi [Kob10],

θ(x) =
N∑

j=1

mj arg(x− aj)

with non-zero integers m1, . . . ,mN , where mj is taken so that z = θ(x) gives the helical
structure. The constant mj quantifies the strength of the spiral center aj. Thus, the level
set formulation of Γt in [Oht03] is given by

Γt = {x ∈ W ; u(t, x) − θ(x) = 0 with modulo 2π}.
In this formulation spirals are given by the cross-section between an auxiliary cone de-
scribed by u(t, x) and a helical surface z = θ(x). With this formulation we derive a level
set equation corresponding to motion of spirals by (1.1). Moreover, we construct a surface
height function from a solution of the level set equation.

While the existence of the initial data u0 for a given initial spirals Γ0 was established
in [GNO08], construction of initial auxiliary function u0 at practical level is still difficult,
because the method requires one to take a branch of sheet structure functions whose
discontinuity is only on Γ0. To overcome this difficulty we first give a practical way
to construct u0 for a spiral with a single dislocation center, and then for a line spiral
connecting between two centers. We further give an additive way to construct an initial
auxiliary function u0 inductively with respect to numbers of screw dislocations. We also
present a way to construct u0 for a complicated spiral with a single center.

A crucial advantage of our method is the use of a single scalar equation, even for
situations involving multiple centers with different strengths. In particular, our single-
equation formulation is useful when considering evolution of several spirals associated
with one screw dislocation. With our method, it suffices to choose a suitable coefficient
in front of the argument function arg, whose origin is the screw dislocation center in our
method. Our single-equation formulation also enables us to compare the activities between
a group of screw dislocations with co-rotating single spirals and one screw dislocations
with multiple spirals. Smereka in [Sme00] treats a pair of co-rotating spirals or those with
opposite rotational orientations when the pair is far apart, i.e, the distance of the pair
is larger than 2π/C in the evolution by (1.1), which is the critical distance proposed by
[BCF51]. Our method is able to examine not only a close pair of spirals but also a group
of several (of course two or more) screw dislocations.

In the paper, on the one hand we numerically verify all speculations for spirals given
by [BCF51], on the other hand we examine some situations that are not discussed in
[BCF51]. While Burton et al discussed the activity of a group of screw dislocations, they
did not discuss the situation in which screw dislocation centers with different strengths
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co-exist on the surface. In this paper we demonstrate simulations involving configurations
such as a pair of co-rotating or opposite oriented spirals, and several screw dislocations
with different rotational orientations and strengths. Anisotropic motion is not treated in
this paper, but our formulation also can apply to the anisotropic evolution with a smooth
and strictly convex surface energy density; see [Gig06] for detail for a formulation of an
anisotropic evolution.

Nevertheless, there remain some situations to which our method do not apply. While
[Sme00] and this paper study the dynamics of the spirals formed by steps centering at a set
of dislocations, the dynamics of the screw dislocations (including screw dislocation centers)
in the crystals are not modeled. In [XCSE03] and [XSCW04], Xiang et. al. proposed
another level set formulation to compute the motion of screw dislocation in crystals. In
their level set formulation, screw dislocations are implicitly represented as the intersection
of two level set functions defined in three dimensions. One of the further difficulties for
modeling the dynamics of screw dislocations in our method resides in the need to remove
neighborhoods of screw dislocations from the surface (in numerical computations it suffices
to remove one grid point when a screw dislocation center is on the grid point). However,
if the screw dislocation center is just a single point, theoretical treatment seems to be
difficult. For this direction there is a work by Forcadel, Imbert and Monneau [FIM] but
their setting is somewhat restrictive. Imai, Ishimura and Ushijima [IIU99] presented a
formulation of an evolving spiral by crystalline curvature flow with no driving force and
gave some numerical simulations as well as a proof for local well-posedness.

Several interesting results on existence and behavior of spirals are obtained by ap-
proaches based on ordinary and partial differential equations, shortly (ODE) and (PDE).
In an ODE approach several interesting self-similar spiral type solutions are constructed
and classified in various settings (e.g. [Ish98], [FGT04], [FGT06], [GNOT06]). In a PDE
approach, several results on Lyapunov or asymptotic stability of rotating spirals are de-
rived; see e.g. [GIK02]. Ogiwara and Nakamura [ON03] studied a diffuse interface model
proposed by Kobayashi [Kob10], and established the existence and asymptotic stability
of steadily rotating spirals. In particular, their stability result implies that, when we
consider the evolution of m spirals associated with one center, then the spiral pattern
with 1/m times rotation symmetry is asymptotic stable. This result is different from the
behavior with similar situation in our method. This phenomenon will be discussed in
detail in our forthcoming paper [GOT].

This paper is organized as follow: In the following subsection, we present the idea of
using a sheet structure function to define a spiral; in Section 2 we present our proposed
level set formulation for the simulation of spiral crystal growth. In Section 3, we present
some numerical simulations involving spirals of different configurations.

2. A level set formulation using sheet structures

2.1. Spirals on a plane. We consider a growing crystal surface with N (≥ 1) screw
dislocations over a bounded domain Ω ⊂ R2. Screw dislocations typically result in dis-
continuities in the crystal height that connects to the dislocations. In this paper, these
discontinuities are called steps in the crystal height. The location of the steps are spiral
curves which we will model and evolve, and in later parts of the paper, we will use ‘curves’
and ‘steps’ interchangeably in this paper.
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Associated with the screw dislocations are the centers of spirals, denoted by a1, a2, . . . , aN ,
which are assumed to be stationary. For a technical reason we further assume that a (screw
dislocation) center consists a neighborhood Uj of aj, and U i∩U j = ∅ for i 6= j. We remove

all U j from Ω, and thus set W = Ω \ (
∪N

j=1 U j). On this domain, spirals can be defined
by parameterized curves

(2.1) Γ := {P (s) ∈ W ; s ∈ [0, s0]}.
As we shall see later, the height of the crystal surface can be defined from the configuration
of spirals.

In this paper, we consider evolving spirals Γt in W . To guarantee the unique solvability
of the initial value problem for (1.1) we impose the right angle boundary condition (1.2)
on ∂W (see [Oht03] [GNO08]).

As in [GNO08] it is convenient to classify spirals into two types — a simple spiral and
a connecting spiral — depending on the feature whether or not it touches the boundary
∂Ω of the crystal surface Ω.

Definition 2.1. Let Γ be given by (2.1).

(i) For a given point a ∈ Ω let U be a neighborhood of a satisfying U ⊂ Ω whose
boundary does not touch ∂Ω, and W = Ω \ U . We say Γ is a Cn (n ∈ N ∪ {0})
simple spiral associated with a ∈ Ω if
(S1) P (s) ∈ Cn([0, s0]) and |Ṗ (s)| 6= 0 for s ∈ [0, s0] if n ≥ 1, where Ṗ = dP/ds,
(S2) P (0) ∈ ∂U , P (s0) ∈ ∂Ω and P (s) /∈ ∂W for s ∈ (0, s0)
holds.

(ii) For given points a1, a2 ∈ Ω let U1 and U2 be neighborhoods of a1 and a2 respec-
tively, and W = Ω\U1 ∪ U2. Assume that U1 and U2 is disjoint, i.e., U1∩U2 = ∅,
and Ui ⊂ Ω whose boundary does not touch ∂Ω for i = 1, 2. We say Γ is a Cn

connecting spiral between a1 and a2 (or associated with a1 and a2) if (S1) and
(S2′) P (0) ∈ ∂U1, P (s0) ∈ ∂U2, and P (s) /∈ ∂W for s ∈ (0, s0)
holds.

For the case W = Ω \ (
∪N

i=1 U i)) with (mutually disjoint) neighborhoods Ui of ai for
i = 1, . . . , N , we call a connecting spiral between ai and aj simply an (i, j) connecting
spiral for simplicity.

Remark 2.2. Note that an (i, j) connecting spiral is also a (j, i) connecting spiral by taking
Q(s) = P (s0 − s). However, we ignore the direction of the connection in the following
arguments.

Spirals on a plane have two orientations, one is related to the evolution and the other to
rotation with respect to a screw dislocation center. The orientation of the evolution is
defined as a continuous unit normal vector field on the curve, we denote this vector field
by n. The orientation of the rotation can be defined by the relation between the tangent
and the normal vectors of the spiral as in Definition 2.3. These orientations should not
be confused with rotations of the self-similar spiral structure resulted from the spiral
evolution.
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Definition 2.3. Let Γ be a C1 simple or connecting spiral associated with a ∈ Ω at P (0).
Let s in P (s) be an arclength parameter. We say that Γ has a counter-clockwise (resp.
clockwise) orientation with respect to a ∈ Ω if

n(P (s)) =

(
0 −1
1 0

)
Ṗ (s)

(
resp. −

(
0 −1
1 0

)
Ṗ (s)

)
holds for s ∈ [0, s0].

Figure 2.1. Two spirals with opposite rotational orientations. The one
on the left has a counter-clockwise orientation.

Figure 2.1 depicts two spirals of opposite rotational orientations.

Remark 2.4. If an (i, j) connecting spiral has a counter-clockwise orientation w.r.t. ai,
then it has a clockwise orientation w.r.t. aj. In fact, we set Q(s) = P (s0 − s) to obtain

n(Q(s)) = n(P (s0 − s)) =

(
0 −1
1 0

)
Ṗ (s0 − s) = −

(
0 −1
1 0

)
Q̇(s)

for s ∈ [0, s0]. Moreover, one finds that the rotational orientations for connecting spirals
is uniquely determined in spite of the direction (i, j) or (j, i) of the connection.

We now define the generalized number of spirals associated with a center.

Definition 2.5. Let ai ∈ Ω be a center for i = 1, . . . , N . We define the signed number of
spirals associated with ai as

mi = m+
i −m−

i ,

where m+
i and m−

i are respectively the number of spirals which are associated with ai and
which have counter-clockwise and clockwise orientations.

Physically speaking in our setting the Burgers vector is orthogonal to the plain containing
Ω and its modulus equals |mi|. We shall exclude the case mi = 0.
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Figure 2.2. Surface and the height function.

2.2. The proposed level set formulation. For simplicity we consider a counter-
clockwise oriented spiral associated with the origin. When the driving force, C in (1.1),
is positive, this spiral moves around the origin counter-clockwise, and the corresponding
crystal surface grows up with the climbing steps on a helical surface similar to a spiral
staircase. We interpret this phenomena as step evolution on the Riemann surface “z =
arg x”. In this case, writing the crystal surface as a height function h(t, x), we can define
interior and exterior sets by {(x, z) ∈ W × R; z < h(t, x)} and {(x, z) ∈ W × R; z >
h(t, x)}, respectively. However, it suffices to consider the height z only on the helical
surface “z = arg x” in our case. To complete our idea rigorously, we introduce a covering
space as in [Oht03], which is

X := {(x, ξ) ∈ W × RN ; (cos ξi, sin ξi) = (x− ai)/|x− ai| for i = 1, . . . , N},
where ξ = (ξ1, . . . , ξN). If N = 1, the set X corresponds to the surface z = arg x.

Definition 2.6. Let mi ∈ Z \ {0} be the signed number of spirals associated with ai. We

say Γ̃ is a generalized spiral curve on X if there exists u ∈ C(W ) satisfying

Γ̃ = {(x, ξ) ∈ X; u(x) −
N∑

i=1

miξi = 0}.

Moreover, we call

Ĩ := {(x, ξ) ∈ X; u(x) −
N∑

i=1

miξi > 0},

Õ := {(x, ξ) ∈ X; u(x) −
N∑

i=1

miξi < 0}

respectively the interior and exterior sets of Γ̃.

In the evolution of spirals on the plane, the division of interior and exterior makes sense
only locally. It is inconvenient for the level set method, in particular to determine the
direction of the evolution. The covering space we introduced enables us to determine the
interior and exterior globally in the space. In particular, the inequality in the definition of
interior is related to the Figure 2.2; the term

∑N
j=1mjξj means the height in the covering
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space and thus the inequality means z < u(x) like as the Figure 2.2, which implies that
u plays the role of the height function.

We now give a level set formulation for evolving spirals from the above configuration.
Let Γt be a given evolving spiral on W with orientation of evolution n at time t and with
a signed numbers mj associated with aj. We describe it as

(2.2) Γt = {x ∈ W ; u(t, x) − θ(x) ≡ 0 mod 2πZ}, n = − ∇(u− θ)

|∇(u− θ)|

with an auxiliary function u : [0, T ] ×W → R and a sheet structure function

(2.3) θ(x) ≡
L∑

i=1

mi arg(x− ai).

Naturally, in this formulation for spirals, θ has to be multiple-valued. We can choose
other multiple-valued function whose derivative are uniquely defined in spite of choices of
branches. However, our choice of θ as of the form (2.3) is physically important because it
helps describe the height of the crystal surface; see Section 2.5 for detail.

Once we obtain u by solving the evolution equation corresponding (1.1)–(1.2), which is
(2.4)–(2.6) in §2.3, we can extract the evolving spirals by (2.2). However, for numerical
purposes, we need to remove the spurious zero level set that results from the branch cuts
used in defining θ.

Without loss of generality, we assume that a1
1 < a1

2 < · · · < a1
N for aj = (a1

j , a
2
j),

j = 1, . . . , N. We decompose W into the union of vertical strips, separated by the centers
and extract Γ in each strip. We set

Wj =


{x = (x1, x2) ∈ W ; x1 ≤ a1

1} if j = 0,
{x = (x1, x2) ∈ W ; a1

j ≤ x1 ≤ a1
j+1} if j = 1, . . . , N − 1,

{x = (x1, x2) ∈ W ; x1 ≥ a1
N} if j = N.

Let Θ̂−
j :
∪N

i=j Wi → (−π, π] and Θ̂+
j :
∪j−1

i=0 Wi → (0, 2π] be the corresponding smooth

branches of arg(x− aj), and define Θ̂j : Wj → R by

Θ̂j(x) =

j∑
i=1

miΘ̂
−
i (x) +

N∑
i=j+1

miΘ̂
+
i (x) for j = 0, . . . , N.

We here note that
∑0

i=1miΘ̂
−
i (x) =

∑N
i=N+1miΘ̂

+
i (x) ≡ 0. Hence, Θ̂j is smooth in Wj

(see Figure 2.2), and the spiral Γt can be unambiguously defined by

Γt =
N∪

j=0

(Γt ∩Wj) =
N∪

j=0

k̂j∪
k=−k̂j

{x ∈ Wj; u(t, x) − Θ̂j(x) = 2πk},

where k̂j is the smallest integer satisfying maxWj
|u(t, ·) − Θ̂j| < 2πk̂j.
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•

•

•

Wj

aj

aj+1

aj+2

•aj−1

Figure 2.3. Branch cuts of Θ̂j.

2.3. Dynamics. Although our formulation (2.2) includes a multi-valued function θ, it
is essentially the same as a level set formulation by a smooth branch of w = u− θ locally.
Thus we have

n = − ∇(u− θ)

|∇(u− θ)|
, V =

ut

|∇(u− θ)|
, κ = −div

∇(u− θ)

|∇(u− θ)|
.

The equations (1.1) and (1.2) are represented as follows (see [Gig06] for details);

ut − |∇(u− θ)|
{

div
∇(u− θ)

|∇(u− θ)|
+ C

}
= 0 in (0, T ) ×W,(2.4)

〈~ν,∇(u− θ)〉 = 0 on (0, T ) × ∂W.(2.5)

Precisely speaking, the system (1.1)–(1.2) is formally equivalent to (2.4)–(2.5) only on
spirals. The main idea of a level set method is to consider the system (2.4)–(2.5) not only
on spirals but also on whole W .

For a simulation of the evolution we choose u0 ∈ C(W ) satisfying

Γ0 = {x ∈ W ; u0(x) − θ(x) ≡ 0 mod 2πZ}

for a given initial curve Γ0, and solve the initial-boundary value problem (2.4), (2.5) and

(2.6) u|t=0 = u0.

to describe evolutions of spirals.
Much analysis of (2.4)–(2.5) has been done; the mathematical framework of our pro-

posed approach is complete. In [Oht03] the first author established a comparison principle
for viscosity solutions of (2.4)–(2.5), which implies the uniqueness of solutions, and the
existence of a time-global solution for a continuous initial datum u0. Goto, Nakagawa
and the first author [GNO08] obtained the comparison principle of interior and exterior
sets on X, and thus the uniqueness of level sets Γt with respect to an initial curve Γ0 is
established. They also construct a continuous initial data u0 such that (2.2) holds for
a given Γ0. Note that it is nontrivial to construct a suitable auxiliary function u0 for a
given initial spiral Γ0 which is quite different from conventional level set approach [ES91],
[CGG91], [Gig06]. Furthermore, it is rather easy to see [CIL92], [CGG91], [ES91], [Gig06]
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that the viscosity solutions of the regularized problem

(2.7) ut − |∇(u− θ)|

{
div

∇(u− θ)√
ε2 + |∇(u− θ)|2

+ C

}
= 0

converges locally uniformly to the viscosity solution of (2.4)–(2.5). In a later section we
present numerical simulations based on (2.7).

2.4. Initialization. For a given bunch of spirals Γ it is nontrivial to find u ∈ C(W )
satisfying

(2.8) Γ = {x ∈ W ; u(x) − θ(x) ≡ 0 mod 2πZ}.
Goto, Nakagawa and the first author show in [GNO08] the existence of u ∈ C(W ) sat-
isfying (2.8). However, their method is difficult to carry out in practical level. In fact,
they first construct θΓ which is a smooth branch of θ with branch-cut line on Γ. Next,
they mollify it with linear interpolation in very thin tubular neighborhood around of Γ.
Thus, the difficulties lie in the construction of θΓ and the choice of tubular neighborhood.
In particular, the second step is crucial since that the width of neighborhood depends
on the size of removed neighborhoods around aj. In fact, the method of [GNO08] would
construct initial data with |∇(u−θ)| = O(∆x−1) if the diameter of removed neighborhood
is O(∆x), where ∆x is a spatial lattice span.

In this subsection, we shall give a practical way to construct smoother u for a class of
simple spirals centering at the origin. Next, we give an additive way of constructing u from
those of simpler spirals. In particular, we shall give a practical way to construct u for any
initial configuration whose curve segmentations consist of straight lines. Furthermore,
we shall consider here only the case for a single simple spiral with counter-clockwise
orientation with respect to the origin, i.e. when θ(x) = arg x since the data v for Γ with
θ(x) = − arg x is given by v = −ũ which is the data for {(x1,−x2) ∈ W ; (x1, x2) ∈ Γ}.

Spreading spiral associated with the origin. Let Γ be given by

Γ = {r(cos ξ(r), sin ξ(r)) ∈ W ; r ∈ [ρ,R]}
with a continuous function ξ ∈ C([ρ,R]). In this case we set u as

u(x) := ξ(|x|).
In particular, a line {r(cosα, sinα); r ∈ [ρ,R]} for an angle constant α is given by
u(x) = α.

Connecting straight line between two centers. The above idea for a line enables us
to find that

u(x) = π for x ∈ W

gives a connecting line

Γ = {σa1 + (1 − σ)a2 ∈ W ; σ ∈ [0, 1]}
between two centers a1, a2 ∈ Ω. In fact, let L = {σa1 + (1 − σ)a2 ∈ R2; σ ∈ R} = {x ∈
R2; (x− a1) · pL = 0}, where pL ∈ S1 satisfying pL · (a2 − a1) = 0. Set

W1 = {x ∈ W ; (x− a1) · pL > 0}, W2 = {x ∈ W ; (x− a1) · pL < 0}.
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Then we have W 1 ∪W 2 = W , W 1 ∩W 2 = L ∩W . If arg(x− a1) − arg(a2 − a1) ∈ (0, π)

in W1, then we also have arg(x− a2) − arg(a2 − a1) ∈ (0, π), which implies

arg(x− a1) − arg(x− a2) 6≡ π mod 2πZ on W1.

The above is also obtained similarly when arg(x− a1) − arg(a2 − a1) ∈ (−π, 0) in W1 or
in W2. Moreover, we find

arg(x− a1) − arg(x− a2) ≡

{
0 on L ∩W ∩ Γc,

π on Γ

}
mod 2πZ.

Thus u ≡ π gives the above Γ by (2.8).

Additive construction. We give here an additive method of constructing u satisfying

(2.9) Γ1 ∪ Γ2 = {x ∈ W ; u(x) − θ(x) ≡ 0 mod 2πZ}

from the initial data u1 and u2 describing Γ1 and Γ2 as

Γi = {x ∈ W ; ui(x) − θi(x) ≡ 0 mod 2πZ} for i = 1, 2,

respectively. Note that in this case θ ≡ θ1 + θ2 mod 2πZ.
First, we prepare a modification of continuous function which still describes the same

spirals. Let H1 : R → R be a function defined as

(2.10) H1(σ) =

 −1 if σ ≤ −1,
σ if − 1 < σ < 1,
+1 if σ ≥ 1.

Then, the functions

vi(x) := Θi(x) + 2πki(x) + πH1(λi[ui(x) − (Θi(x) + 2πki(x))])

are still continuous and satisfy

Γi = {x ∈ W ; vi(x) − θi(x) ≡ 0 mod 2πZ} for i = 1, 2

for any positive constants λi ∈ [1/π,∞) and i = 1, 2, where Θi is a smooth branch of θi

whose branch-cut line is on
∪N

j=1{aj + (x1, 0); x1 ≥ 0}, and ki : W → Z are functions
satisfying

|ui(x) − (Θi(x) + 2πki(x))| ≤ π for x ∈ W, i = 1, 2.
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Thus, choose λi > 0 so that

{x ∈ W ; |v1(x) − (Θ1(x) + 2πk1(x))| < π}
∩ {x ∈ W ; |v2(x) − (Θ2(x) + 2πk2(x))| < π} = ∅

and then u(x) = v1(x) + v2(x) + π is continuous and satisfies (2.9).

Remark 2.7. Constructing a u ∈ C(W ) for a general simple spiral curve Γ = {P (s); s ∈
[0, `]} is more complicated. Here we shall propose one way to construct u for general Γ

associated with the origin. Let r̂(s) and ξ̂k(s) be satisfy

P (s) = r̂(s)(cos ξ̂k(s), sin ξ̂k(s)) for s ∈ [0, `],

and ξ̂k(0) ∈ [2πk, 2π(k + 1)) for k ∈ Z. We consider domains Ek enclosed by Γ̂k ∪ C1,k ∪
Γ̂k+1 ∪ C2,k, where

Γ̂k := {(r̂(s), ξ̂k(s)); s ∈ [0, `]},
and

C1,k = {(ρ, ξ); ξ ∈ [ξ̂k(0), ξ̂k+1(0)]},

C2,k = {(R, ξ); ξ ∈ [ξ̂k(`), ξ̂k+1(`)]}.

Let ϕ ∈ C2(E) ∩ C([ρ,R] × R) satisfy

(2.11)


∆r,ξϕ(r, ξ) = 0 for (r, ξ) ∈ E,

ϕ(ρ, ξ) = ξ̂0(0) for (ρ, ξ) ∈ C1,

ϕ(R, ξ) = ξ̂0(`) for (R, ξ) ∈ C2,

ϕ(r̂(s), ξ̂k(s)) = ξ̂0(s) for (r̂(s), ξ̂k(s)) ∈ Γ̂,

where E =
∪

k∈ZEk, Ci =
∪

k∈Z Ci,k for i = 1, 2, Γ̂ =
∪

k∈Z Γ̂k, and ∆r,ξ = ∂2/∂r2 +∂2/∂ξ2.
Then, u(x) = ϕ(|x|,Arg(x)), where Arg(x) ∈ [0, 2π) is the principal value of arg(x), is a
function satisfying (2.8). In fact, ψ(r, ξ) := ϕ(r, ξ) − ξ still satisfies

∆r,ξψ = 0 in Ek,

and thus ψ attains its maximum or minimum on ∂Ek = Γ̂k ∪ Γ̂k+1 ∪ C1,k ∪ C2,k by the
maximum principle [PW67]. Moreover, from the last case in (2.11) we have

ψ(r, ξ) = −2πk for (r, ξ) ∈ Γ̂k,

i.e., ψ is not a constant. Then we have

−2π(k + 1) < ψ < −2πk in Ek,

and thus

u(x) − arg(x) ≡ ϕ(|x|,Arg(x)) − Arg(x) = ψ(|x|,Arg(x)) ≡ 0 mod 2πZ

only on Γ.
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2.5. Evaluating the height function. It is of great interest to predict the growth rate
of the crystal surface. Burton, Cabrera and Frank in [BCF51] calculate the growth rate
of the surface with a single center by calculating the angle velocity of the rotating spiral.
In this paper, we consider a general case that involve multiple centers. We construct a
surface height function h(t, x) from Γt and obtain the mean growth rate Rh(t; t0) of the
surface in [t0, t] as

Rh(t; t0) =
1

|W |

∫
W

h(t, x) − h(t0, x)

t− t0
dx,

and the growth rate R(t) as

R(t) = R′
h(t; t0) =

1

|W |

∫
W

ht(t, x)dx.

We construct h(t, x) from the approximation by the theory of dislocations as in [HL68].
Here we assume that the vertical displacement of the surface by screw dislocations is small
enough, and there is no horizontal displacement. Then, from the linear elasticity theory
h satisfies

(2.12) ∆h = −h0divδΓtn,

where h0 is a unit height of steps, and δΓt is the delta measure concentrated on Γt.
Instead of solving (2.12) with a Neumann boundary condition as in [Sme00], we solve it
analytically and derive an explicit formula for h. Let θΓt be the branch of θ given by (2.3)
whose discontinuity is only on Γt. By a direct calculation we observe that

(2.13) h(t, x) =
h0

2π
θΓt

is a solution to (2.12). Since the jump of θΓt is −2π in the direction of the normal, the
multiplier 1/2π in front of θΓt is necessary so that (2.13) solves (2.12). Hence, h(t, x) can
be evaluated conveniently from the solution u of (2.4)–(2.5) as described in the following.

Let k(t, x) ∈ Z be such that

|u(t, x) − (Θ(x) + 2πk(t, x))| ≤ π,

where Θ(x) =
∑N

j=1mjΘj(x) and Θj : W → [0, 2π) is a principal value of arg(x−aj). Let
H : R → R be the Heaviside function, i.e.,

H(σ) =

{
−1 if σ < 0,
+1 if σ ≥ 0.

We now define

h(t, x) =
h0

2π
[Θ(x) + 2πk(t, x) + πH(u(t, x) − (Θ(x) + 2πk(t, x)))] .

This is our desired function to describe the height of the crystal surface.
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3. Numerical simulations

In this section we present a few results of numerical experiments.
We set the domain Ω = [−1, 1]2, uniform grid spacing δ = 10−2, and time step τ = δ2/4

for numerical simulations in this section. The lattice points are denoted by (tk, xi,j) =
(τk, δi, δj) for −100 ≤ i, j ≤ 100. In this section we use the equation

(3.1) V = v∞(1 − ρcκ)

instead of (1.1) for consistency with [BCF51]. The corresponding level set equation is
given in

ut − v∞|∇(u− θ)|
{
ρcdiv

∇(u− θ)

|∇(u− θ)|
+ 1

}
= 0 in (0, T ) ×W.

Note that v∞ denotes the evolution speed of a straight line, and ρc denotes the critical
radius such that a disc shrinks if its radius is less than ρc. Solving (1.1) with C = 1/ρc,
and rescaling t to v∞ρct, one obtains the dynamics of spirals prescribed in (3.1).

3.1. Discretization. In this paper we solve (2.4)–(2.5) with a typical explicit finite
difference scheme; see e.g. [OF01],[TO05]. We shall give only a few remarks which are
rather special to our problem.

One of the specific difficulties is in treating the sheet structure function θ when we
apply finite differencing to the terms u − θ in (2.4) or (2.5). The function θ will be
evaluated numerically in a neighborhood of each branch-cut line of arg(x− aj) so that it
is smooth there and we do not perform finite difference across the projected discontinuity
of arg(x− aj).

Writing w = u− θ formally, the equation (2.4) appears in the form

ut − v∞I − v∞ρcII = 0,

I = |∇w|,

II = |∇w|div
∇w
|∇w|

.

More precisely, we denote

I =

√
|∂̃xw|2 + |∂̃yw|2,

II =

√
|∂̂xw|2 + |∂̂yw|2 div

∇w
|∇̄w|
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with wk
i,j = w(tk, xi,j) on a lattice (tk, xi,j) with uniform grid spacing δ > 0 in the x- and

the y- dimensions. If v∞ > 0, |∂̃xw| and |∂̂xw| are discretized differently as follows:

|∂̃xw| = max
{

max
{
∂̃+

x w, 0
}
,−min

{
∂̃−x w, 0

}}
,

|∂̂xw| =

{
max{|∂+

x w|, |∂−x w|} if |∂◦xw| � 1,
|∂◦xw| otherwise,

∂±x w =
wk

i±1,j − wk
i,j

±δ
, ∂◦xw =

wk
i+1,j − wk

i−1,j

2δ
,

∂̃±x w =
wk

i±1,j − wk
i,j

±δ
∓ 1

2
µ

(
wk

i±2,j − 2wk
i±1,j + wk

i,j

δ2
,
wk

i+1,j − 2wk
i,j + wk

i−1,j

δ2

)
,

µ(p, q) =

{
p if |p| < q,
q otherwise

If v∞ < 0, then ∂̃wx is discretized by

|∂̃xw| = max
{
−min

{
∂̃+

x w, 0
}
,max

{
∂̃−x w, 0

}}
.

The terms |∂̃yw|, |∂̂yw| are defined analogously as above.
The curvature term div(∇w/|∇̄w|) is discretized as

div
∇w
|∇̄w|

=
1

δ

 ∂+
x w√

ε2 + (∂+
x w)2 + (∂̄+

y w)2
− ∂−x w√

ε2 + (∂−x w)2 + (∂̄−y w)2

+
∂+

y w√
ε2 + (∂̄+

x w)2 + (∂+
y w)2

−
∂−y w√

ε2 + (∂̄−x w)2 + (∂−y w)2


with a small parameter ε > 0, where ∂̄±x w is discretized as

∂̄±x w =
(wk

i+1,j±1 + wk
i+1,j) − (wk

i−1,j±1 + wk
i−1,j)

4δ
.

The term ∂̄±y w is also defined analogously as above.
We now discuss the treatment of Neumann boundary condition for the boundary of a

small region U that contains the spiral center. We consider two idealized situations. The
first one being that U corresponds to a disc centering at a grid node xi,j with a radius
that is smaller than δ/2. The second situation corresponds to U being a disc with a small
radius which is independent of the grid spacing. In the first situation, we assign different
fictitious values to wi,j depending on the finite difference stencil used in discretizing the
PDE at a grid node nearby xi,j, assuming that xi,j is in the computational domain. More
precisely, if the PDE is discretized on xi−1,j, then we assign the fictitious value of wi,j to be
wi−1,j. The other fictitious values of wi,j are assigned accordingly. We remark, however,
that this approach results in relatively larger error in the front propagation speed near
the spiral center.

In the second idealized situation, we further assume that the mesh size δ is smaller than
the radius of U , and that explicit time stepping such as forward Euler or some explicit
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Runge-Kutta method is used to time discretization. In this setting, we may consider ∂U
as an implicit interface, and extend the values of w outside of U following the approach
which is called ”velocity extension” in the level set method literature; see e.g. [OF01], or
more specifically [CT08].

3.2. Single center with multiple spirals. One of advantages over the Smereka’s
formulation is that it is easy to treat the situation there is one center with multiple
spirals. This situation is described by

Γt := {x ∈ W ; u(t, x) −mθ(x) ≡ 0 mod 2πZ}
with θ(x) = arg x and m ∈ Z \ {0}. Here we have assumed that the center is the origin.
The dynamics is given by

ut − v∞|∇(u−mθ)|
{
ρcdiv

∇(u−mθ)

|∇(u−mθ)|
+ 1

}
= 0 in (0, T ) ×W,

〈~ν,∇(u−mθ)〉 = 0 on (0, T ) × ∂W.

Then we find evolving |m| spirals as Γt =
∪|m|−1

k=0 Γk,t and

Γk,t = {x ∈ W ; u(t, x) −mθ(x) ≡ 2πk mod 2π|m|Z}.
To describe this situation by Smereka’s formulation we need 2|m| auxiliary function and
thus system of 2|m| equations.

Figure 3.1 are the evolution of triple spirals associated with the origin by

V = 5(1 − 0.03κ) (i.e., v∞ = 5, ρc = 0.03).

The initial curve is chosen as

Γ0 =
3∪

i=1

{
r

(
cos

2(i− 1)

3
π, sin

2(i− 1)

3
π

)
; r > 0

}
.

In this case we choose u0(x) ≡ 0.

3.3. Co-rotating spirals. Consider the case of N screw dislocations with the same
rotational orientations. We say such a case simply co-rotating spirals. To describe this
situation we consider (2.4)–(2.5) with

θ(x) = m

N∑
i=1

mi arg(x− ai),

where mi ∈ N is the number of spirals associated with ai, and m ∈ {±1} is the constant
chosen by the rotational orientations, i.e., m = 1 if the orientations all spirals are counter-
clockwise, and m = −1 if those are clockwise.

Note that there are no connecting spirals for co-rotating case. Then, if Γ0 is the union
of lines, Γ0 is given as

Γ0 =
N∪

i=1

mi∪
j=1

Li,j,(3.2)

Li,j = {ai + r(cosαi,j, sinαi,j) ∈ W ; r > 0},(3.3)

where αi,j ∈ R is a constant.



A LEVEL SET APPROACH REFLECTING SHEET STRUCTURE FOR SPIRALS 17

Figure 3.1. Motion of triple spirals associated with the origin by V =
5(1 − 0.03κ). Each profile is at t = 0, 0.1250, 0.250 and t = 0.50 from left
top to right bottom.

A simplest but nontrivial situation is the case of N = 2, m1 = m2 = 1 and Γ0 =
L1,1 ∪ L2,1 is given by

L1,1 = {a1 + r(a1 − a2) ∈ W ; r > 0}, L2,1 = {a2 + r(a2 − a1) ∈ W ; r > 0}
with counter-clockwise orientation. In this case θ and u0 are of the form

(3.4)
θ(x) = arg(x− a1) + arg(x− a2),

u0(x) ≡ 0.

Note that we set θ(x) = − arg(x− a1)− arg(x− a2) instead of the above if the rotational
orientations of the curve are clockwise. The figure 3.2 is the simulation with

(3.5)

{
a1 = (−0.35, 0), a2 = (0.35, 0),

V = 5(1 − 0.02κ) (v∞ = 5, ρc = 0.02).

We also obtain the surface height function from a solution of the level set equation with
the method in §2.5 (See figure 3.3.).

One of advantages of our method is that our method enables us to set different numbers
of spirals for several centers, i.e., describing the situations for more general cases of m
and mi. Such situation seems to be impossible to treat by Smereka’s approach. We now
assume that an initial curve is given by (3.2) and (3.3) with counter-clockwise orientation.
Then, from the additive construction we first choose ui,j ∈ C(W ) satisfying

Li,j = {x ∈ W ; ui,j(x) − arg(x− ai) = 0 mod 2πZ},
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Figure 3.2. The simulation of co-rotating spirals by (3.5) and (3.4) at
time t = 0, t = 0.05, t = 0.1, t = 0.5 from left-top to right-bottom.

Figure 3.3. The profile of the surface at t = 0.5 from figure 3.2, which is
reconstructed from the numerical solution of the level set equation.
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and one observe that ui,j(x) ≡ αi,j from the initialization of a line step in §2.4. Next, we
modify ui,j as

(3.6) vi,j(x) = Θi(x) + 2πki,j(x) + πH1(λi,j {ui,j(x) − (Θi(x) + 2πki,j(x))}),
with constants λi,j > 1/π, where H1 is a function defined as (2.10), Θi : W → [0, 2π) is a
principal value of arg(x− ai), and ki,j : W → Z is a function satisfying

(3.7) −π ≤ ui,j(x) − (Θi(x) + 2πki,j(x)) < π for x ∈ W.

Here we choose λi,j as

(3.8) Λi1,j1 ∩ Λi2,j2 = ∅ whenever (i1, j1) 6= (i2, j2),

where

(3.9) Λi,j = {x ∈ W ; |vi,j(x) − (Θi(x) + 2πki,j(x))| < π}.
Then, we set

(3.10) u0(x) =
N∑

i=1

mi∑
j=1

(vi,j(x) + π) − π.

Note that vi,j ∈ C(W ) and satisfies

Li,j = {x ∈ W ; vi,j(x) − arg(x− ai) ≡ 0 mod 2πZ}
if λi,j > 1/π. The condition (3.8) is a sufficient condition to give an initial curve by u0.
Here is an example of simulation of general situation in figure 3.4 with (3.5) and

θ(x) = arg(x− a1) + 2 arg(x− a2),

L1,1 ={a1 + r(cos π, sin π); r > 0},
L2,1 ={a2 + r(cos(−π/3), sin(−π/3)); r > 0},
L2,2 ={a2 + r(cos(π/3), sin(π/3)); r > 0}.

To give an initial datum u0 for Γ0 =
∪2

i=1

∪mi

j=1 Li,j we set

α1,1 = π, α2,1 = −π
3
, α2,2 =

π

3
, λ1,1 = λ2,1 = λ2,2 =

3

π
.

Remark 3.1. When the curves have clockwise orientations, we set ũi,j = −ui,j to obtain
Li,j = {x ∈ W ; ũi,j(x) − θ−i (x) ≡ 0 mod 2πZ} with θ−i = − arg(x− ai) and set ũi,j and
the principal value Θ−

i (x) of θ−i (x) instead of ui,j and Θi in (3.6)–(3.9) to obtain u0 as
(3.10).

One advantage of our method over the Smereka’s method [Sme00] is that our method
is able to verify activity of group of screw dislocations and compare it with a single screw
dislocation with multiple steps.

Burton, Cabrera and Frank [BCF51, 9] pointed out that the activity of co-rotating
spirals depends on the distance of the centers. They first consider the case of a pair of co-
rotating spirals, and pointed out that the activity of a co-rotating pair is indistinguishable
from that of one screw dislocation if the centers are far apart, and, however, should be
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Figure 3.4. Co rotating spirals with different numbers of spiral steps for
each screw dislocations at t = 0 on left top, t = 0.08, t = 0.16, t = 0.24 on
right bottom.

Figure 3.5. Reconstructed surface at t = 0.24 from the numerical solution
in 3.4.
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twice of one screw dislocation if the distance of the centers is much less than ρc, i.e.,
|a1−a2| � ρc for the pair of centers a1 and a2. They also pointed out that the profile of co-
rotating spirals would be effectively two symmetric branches of the complete Archimedean
spirals, r = 2ρcθ and r = 2ρc(θ + π) in the limiting case as |a1 − a2| → 0 where r, θ are
the variables in the polar coordinates. By considering the spirals associated with a1 and
a2 defined by the Archimedeans r = 2ρcθ and 2ρc(θ + π), they observed that the spirals
did not collide with each other if and only if |a1 − a2| < 2πρc (see Figure 3.6). Thus
they discuss the activities and the profiles of spirals according to the centers being “close”
(|a1 − a2| < 2πρc) or “far apart” (|a1 − a2| ≥ 2πρc).

Figure 3.6. Two archimedeans: r = 2ρcθ centering at a1 = (−α, 0) and its
half turn r = 2ρc(θ + π) centering at a2 = (α, 0). In these figures ρc = 1/2,
α = 1 in the left figure, and α = 5 in the right figure, respectively.

Here we present a few simulations that verify the two cases discussed in [BCF51]. In
Figure 3.7 we show three simulations involving respectively two spirals connecting to a
single center at (0, 0), two spirals each connecting to one of the two centers at (±0.02, 0),
and to (±0.2, 0). The evolution equation is

(3.11) V = 5(1 − 0.02κ),

i.e., ρc = 0.02. We choose

u0(x) = 0

for all the case. Figure 3.2 shows a simulation for the farthest case with the same equation
as the simulations in figure 3.7.

The simulation presented in the middle column corresponds to the case |a1 − a2| =
0.04 < 2πρc. In the setup of the simulation we take a1 and a2 as close as possible, so
that there are three grid points between the pair to see the performance of the proposed
method for spirals with centers that are closely positioned on the grid level. Even though
we cannot say that this pair falls into the regime |a1−a2| � ρc, our simulations show that
the corresponding profile is significantly different from the case in which the pair consists
of centers at (±0.2, 0). A crucial difference is that the curve includes some concave points.
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(0, 0) (2 steps) (±0.02, 0) (±0.2, 0)

t = 0

t = 0.08

t = 0.16

t = 0.24

Figure 3.7. Comparison of co-rotating spirals by distances of pairs, and
single center with two branches. The pictures are a single center with two
branches, at (±0.02, 0) and (±0.2, 0) from left to right, and t = 0, 0.08, 0.16
and 0.24 from top to bottom.

One observes that the line tracking points where the curve is concave almost agrees with
the locus of intersections and forms an S-shape.

Remark 3.2. In [OTG] we shall discuss the growth rate of the surface for the case of
centers (±0.02, 0) is very close to the case of a single center with double spirals, and the
case (±0.2, 0) is caught up by a single spiral case.

Burton et al [BCF51] observed by a heuristic argument that a set of centers on one
line plays a role of a single center with multiple activity when the distances between two
neighboring centers one the line is less than 2πρc. Such a set is called a group (or system)
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of centers (or co-rotating spirals). They also presented formulae predicting the activities
between a group of co-rotating spirals and a single one (see Remark 3.3).

We verify the difference of profiles between some cases of systems byN (≥ 2) co-rotating
spirals. Figure 3.8 is a results of simulations on 4 centers (±a, 0), (±b, 0)(a > b > 0) with
counter-clockwise orientations. The evolution equation is (3.11). The first examination is
with a = 0.06 and b = 0.02, the second one is a = 0.15, b = 0.11. According to [BCF51, 9]

Time (±0.06, 0), (±0.02, 0) (±0.15, 0), (±0.11, 0)

t = 0

t = 0.5

Figure 3.8. Comparison of profiles of spirals at time t = 0(top) and t =
0.5(bottom) by 4 centers with the same rotational orientations. The left
one is with (±0.06), (0.02, 0), and the right one is (±0.15, 0.11).

the first one should be regarded as one group of four centers, and the second one should
be two pairs.

In these tests we define the initial curve Γ0 = L1 ∪ L2 ∪ L3 ∪ L4 to be

L1 ={a1 + (−r, 0); r > 0}, a1 = (−a, 0),

L2 ={a2 + (0,−r); r > 0}, a2 = (−b, 0),

L3 ={a3 + (0, r); r > 0}, a3 = (b, 0),

L4 ={a4 + (r, 0); r > 0}, a4 = (a, 0).

Here we have used the simple notations Li instead of Li,1 since each centers have single
line. Here and hereafter we will use similar notations αi, λi instead of αi,1, λi,1 if Γ0

is given by (3.2) and (3.3), and each the center is connected to a single line. In these
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numerical experiments we choose θ =
∑4

i=1 arg(x− ai), and

α1 = π, α2 = −π/2, α3 = π/2, α4 = 0, and λi = 4/π for i = 1, 2, 3, 4

to construct u0 as (3.10).

Remark 3.3. (i) The growth height and rate in §2.5 enables us to find the essential
difference between the case (±0.06, 0), (±0.02, 0) and (±0.15, 0), (±0.11, 0). Ac-
cording to [BCF51, 9], the resultant activity of a group of N co-rotating spirals is
N/(1+l(2πρc)

−1) times that of a single spiral if the group is on a line whose length
is l. The growth rate obtained by our examination implies that the numerical
growth rate by co-rotating screw dislocations at (±0.15, 0), (±0.11, 0) is closer to
the case of two pairs of dislocations with line length 0.04 than that by the group
of 4 screw dislocations with line length 0.30. We shall discuss this subject in one
of our forthcoming paper [OTG].

(ii) There is no explicit definition of activity of a group of screw dislocations in
[BCF51]. A reasonable definition of the activity of a group is the growth rate
of the surface around the group.

(iii) There is a quantity which is called the “strength” of a group in [BCF51]. The
strength should be defined as the sum of the all signed numbers of spirals associ-
ated with centers joined in the group.

We conclude this section by examining a more general group of co-rotating spirals, for
which Burton et al [BCF51] discussed heuristically. Here it is convenient to introduce a
notion of δ-arcwise connecticity. We say that a discrete set A in R2 is δ-arcwise connected
if any two points a1, a2 ∈ A is connected by a δ-chain. Here a δ-chain is a zig-zag line
whose vertices agree with some points in A and the length of each segment is less than
δ. As we mentioned above, if the distance of a co-rotating pair is less than 2πρc, then
the pair is effectively a single center which has twice activity. Moreover, if a third center
in the domain is also less than 2πρc distance to the closest center in the pair, then these
three centers are also regarded as a single center with about triple activity. Consequently,
a set of 2πρc-arcwise connected centers generate a group of centers, i.e., plays a role of
a single center with multiple strength. For example, centers in the left figures of Figure
3.8 generate a group of 4 centers, and those in the right figures generate two pairs (not a
group of 4 centers).

In general, however, the group of centers may develop a pit in the surface of the crystal.
We consider a group of centers which are at a1 = (0.16, 0), a2 = (0.08, 0.15), a3 =
(−0.08, 0.15), a4 = (−0.16, 0), a5 = (−0.08,−0.15), and a6 = (0.08,−0.15). Set the
initial line as

Li = {ai + r(cos π(i− 1)/3, sin π(i− 1)/3); r > 0} for i = 1, 2, 3, 4, 5, 6,

and evolve Γ0 = ∪6
i=1Li with

V = 5(1 − 0.05κ).

Figure 3.9 shows the profile of the spirals at t = 0, 0.5, 0.505, 0.510, 0.515, 0.520, and Figure
3.10 shows the surface at t = 0.520. In this case we choose αi = π(i− 1)/3 and λi = 6/π
for i = 1, 2, 3, 4, 5, 6 to construct u0 as (3.10).
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Figure 3.9. Evolution of surface by a general group of 6 centers at t = 0,
0.5, 0.505, 0.510, 0.515, 0.520.

Figure 3.10. The surface at t = 0.520 in figure 3.9.

We note that in the setting prescribed above, the centers satisfy

|ai+1 − ai| =

{
0.16 for i = 2, 5,
0.17 otherwise

and satisfy |ai+1−ai| < 2πρc = π/10. Therefore these centers are regarded as an effective
single center. Actually the profile of spirals in Figure 3.9 is very close to that of single
center with six branches. However, one finds a closed curve inside of the group at t = 0.520.
This curve is generated by rotating spirals which touch the centers of their neighboring
spirals at some time during the evolution. Thus this curve describes the boundary of a
pit in the surface. Because of the driving force and the curvature of the boundary, the
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pit disappears in a short time. However, the height of the surface at where the pit used
to be remains lower than the surrounding.

3.4. Pair of screw dislocations with opposite rotational orientations. Consider
a pair of spirals with opposite rotational orientations. For simplicity we say that such a
pair an opposite pair. This case is described by our formulation with

θ(x) = m(m1 arg(x− a1) −m2 arg(x− a2)),

where m1,m2 ∈ N are numbers of spirals associated with a1 and a2, respectively, and
m ∈ {±1} is a constant defining the rotational orientations, i.e., m = 1 (resp. m = −1)
if the spirals associated with a1 are counter-clockwise (resp. clockwise) and thus those
associated with a2 are clockwise (resp. counter-clockwise) orientations.

A simple nontrivial example is

(3.12) θ(x) = arg(x− a1) − arg(x− a2)

with Γ0 as follows

(A) Γ0 = {σa1 + (1 − σ)a2 ∈ W ; σ ∈ (0, 1)},
(B) Γ0 = L1 ∪ L2, Li = {ai + r(cosαi, sinαi) ∈ W ; r > 0} for given constants

α1, α2 ∈ R.

Case (A) is already mentioned in §2.4 and thus we set

(3.13) u0(x) = π.

Case (B) is similar to the situation discussed in §3.3. If α1 = arg(a1 − a2) and α2 =
arg(a2 − a1) then we set

u0(x) = 0.

Figure 3.11 shows a simulation involving an opposite pair belonging to Case (A), and
Figure 3.12 shows the profile of the surface at time t = 0.5, which is reconstructed from
the solution u. In the simulation, we set θ and u0 as (3.12) and (3.13), respectively. In
Figure 3.10, one sees that the spiral curve changes from an open curve to a closed one,
and then to an open curve again; it also splits into different connected pieces when the
curve intersects itself. All of these phenomena are computed effortlessly by the proposed
method.

To set up a configuration belonging to Case (B), we first set u1 = α1 and u2 = −α2 to
obtain

L1 ={x ∈ W ; u1(x) − θ+
1 (x) ≡ 0 mod 2πZ},

L2 ={x ∈ W ; u2(x) − θ−2 (x) ≡ 0 mod 2πZ}
with θ±i (x) = ± arg(x− ai) for i = 1, 2. We next set

u0(x) =v1(x) + v2(x) + π,

v1(x) =Θ+
1 (x) + 2πk1(x) + πH1(λ1{u1 − (Θ+

1 (x) + 2πk1(x))}),
v2(x) =Θ−

2 (x) + 2πk2(x) + πH1(λ2{u2 − (Θ−
2 (x) + 2πk2(x))})

as in (3.6), where Θ±
i is the principal value of θ±i , i.e., ± arg(x − ai) for i = 1, 2. Here

ki : W → Z is a function satisfying (3.7) with ui,j = ui, vi,j = vi, ki,j = ki for i = 1, 2.
The coefficients λi are constants satisfying eqrefcoprime with Λi,j = Λi for i = 1, 2, i.e.,
Λ1 ∩ Λ2 = ∅.
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Figure 3.11. The evolution of an opposite pair by (3.5) with initial line
(A) at time t = 0, t = 0.05, t = 0.1, t = 0.5 from left-top to right-bottom.

Figure 3.12. The profile of the surface at t = 0.5 from figure 3.11, which
is reconstructed from the numerical solution of the level set equation.
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If an opposite pair a1 and a2 have m1 and m2 spirals, respectively, then it is convenient
for construction of u0 to make groups of simple and connecting spirals for an initial curve.
Hence we define Γ0 by

Γ0 =

(
m̃1∪
j=1

L1,j

)
∪

(
m̃2∪
j=1

L2,j

)
∪

(
nc∪

n=1

Lc,n

)
,

L1,j ={x ∈ W ; u1,j(x) − θ+
1 (x) ≡ 0 mod 2πZ},

L2,j ={x ∈ W ; u2,j(x) − θ−2 (x) ≡ 0 mod 2πZ},
Lc,n ={x ∈ W ; uc,n(x) − (θ+

1 (x) + θ−2 (x)) ≡ 0 mod 2πZ}

with uc,n, u1,j, u2,j ∈ C(W ). Here L1,j and L2,j denote simple spirals associated with a1

and a2, respectively, and Lc,n denotes connecting spirals, so the numbers nc, m̃1, and
m̃2 ∈ N of each spirals satisfy m̃1 + nc = m1 and m̃2 + nc = m2. For connecting spirals
Lc,n we also introduce modified initial data vc,n and slope sets Λc,n, which is similar as
(3.6) and (3.9) respectively, of the form

(3.14)

vc,n(x) =Θ+
1 (x) + Θ−

2 (x) + 2πkc,n(x)

+ πH1(λc,n{uc,n − (Θ+
1 (x) + Θ−

2 (x) + 2πkc,n(x))}),
Λc,n ={x ∈ W ; |vc,n(x) − (Θ+

1 (x) + Θ−
2 (x) + 2πkc,n(x))| < π},

where λc,n > 1/π is a constant and kc,n : W → Z is such that

−π ≤ uc,n(x) − (Θ+
1 (x) + Θ−

2 (x) + 2πkc,n(x)) < π for x ∈ W.

For construction of initial data u0 ∈ C(W ) similarly as (3.10) we choose λ1,j, λ2,j and λc,n

such that

Λc,n ∩ Λi,j = ∅ Λc,n1 ∩ Λc,n2 = ∅ if n1 6= n2,

in addition to (3.8) for n, n1, n2 and (i, j). Then, we set

u0(x) =
nc∑

n=1

vc,n(x) +

m̃1∑
j=1

v1,j(x) +

m̃2∑
j=1

ṽ2,j(x) + (nc + m̃1 + m̃2 − 1)π

and obtain

Γ0 = {x ∈ W ; u0(x) − θ(x) ≡ 0 mod 2πZ}
with θ(x) = m1 arg(x − a1) − m2 arg(x − a2). If we consider the opposite rotational
orientations of the above, then we change a1 and a2 and do above.

We have two examples of simulations. The first one is for the same initial curve as
figure 3.2, but L2,1, L2,2 have the clockwise orientations (see figure 3.13). In this case we
set

u1,1 ≡ π, u2,1 ≡ −π
3
, u2,2 ≡

π

3
, λ1,1 = λ2,1 = λ2,2 =

3

π
and set

u0(x) = v1,1(x) + v2,1(x) + v2,2(x) + 2π.
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Figure 3.13. Simulation of single spirals associated with a1 = (−0.35, 0)
with the counter-clockwise orientations, and two spirals associated with
a2 = (0.35, 0) with clockwise orientations. The evolution equation is (3.5),
i.e., v∞ = 5 and ρc = 0.02. The above figures are profiles of spirals at
t = 0, 0.05, 0.1 and 0.2 from left top to right bottom.

The second one is by a connecting lines and a simple spiral line associated with a2, i.e.,

Γ0 =Lc ∪ L2,

Lc ={σa1 + (1 − σ)a2 ∈ W ; σ ∈ (0, 1)},
L2 ={a2 + (r, 0) ∈ W ; r > 0}.

(See figure 3.14.) In this case we set uc ≡ π and u2 ≡ 0 to obtain

(3.15)
Lc = {x ∈ W ; uc(x) − (θ+

1 (x) + θ−2 (x)) ≡ 0 mod 2πZ},
L2 = {x ∈ W ; u2(x) − θ−2 (x) ≡ 0 mod 2πZ},

and set
u0(x) = vc(x) + v2(x) + π

with λc = λc,1 = π/2 and λ2 = λ2,1 = π/2.

Remark 3.4. Burton et al [BCF51, 9, Appendix B] give an interesting observation on the
growth of a crystal surface by an opposite pair a1 and a2:

(i) |a1 − a2| < 2ρc: the pair have no influence on the growth of the surface (they call
this pair an inactive pair);
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Figure 3.14. Simulation of similar case as figure 3.13 started from single
connecting line and single simple line associated with a2. The equation,
and times of each profiles are same as figure 3.13.

(ii) |a1 − a2| < 3ρc: the growth rate of the surface is monotonically increasing with
respect to the distance of the pair, and become larger than the case of single
spirals;

(iii) |a1−a2| is sufficiently large: the growth rate of the surface decreases with respect
to |a1 − a2|, and converges to the single one exponentially fast as |a1 − a2| → ∞.

The proposed method may be used to discover the existence of an inactive pair, the
relation between the distance of the pair and the growth rate. From the second results on
the above we observe that the growth rate attains its maximum when the distance of the
pair is around 4ρc. In [OTG] and [GOT] we prove rigorously the existence of an inactive
pair and of curves which play the role of upper bound on the evolution of steps.

3.5. Coarsening. According to Remark 3.4, if there exist several opposite pairs on a
surface, then the growth resulting from the closest pair would dominate so that the surface
forms one large mountain that peaks around the closest pair. Schulze and Kohn [SK99] ap-
proximate this phenomenon by proposing a Hamilton-Jacobi equation with discontinuous
source terms at points of dislocations. For a rigorous treatment of such Hamilton-Jacobi
equation see a recent work by Hamamuki and the third author [GH11].

Figure 3.15 shows the evolution of two opposite pairs and the emergence of a mountain
peaking near the pair on the upper left corner of the domain. The parameters in the
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Figure 3.15. Evolution of spirals by close and far opposite pairs. The
figures are profiles of spirals at t = 0, 0.25, 0.5, 0.75, 1.0 and 1.5.

evolution equation, the center locations, and θ used in the simulation are given by

V = 20(1 − 0.01κ) (v∞ = 20, ρc = 0.01),

a1 = (−0.65, 0.6), a2 = (−0.6, 0.65), a3 = (−0.1,−0.7), a4 = (0.7, 0.1),

θ(x) = − arg(x− a1) + arg(x− a2) + arg(x− a3) − arg(x− a4).

In constructing the initial data we first set

u1 = u2 = π,

θ1(x) = − arg(x− a1) + arg(x− a2), θ2(x) = arg(x− a3) − arg(x− a4)

to obtain
L1 ={σa1 + (1 − σ)a2 ∈ W ; σ ∈ (0, 1)}

={x ∈ W ; u1(x) − θ1(x) ≡ 0 mod 2πZ},
L2 ={σa3 + (1 − σ)a4 ∈ W ; σ ∈ (0, 1)}

={x ∈ W ; u2(x) − θ2(x) ≡ 0 mod 2πZ}.
Next we modify u1 and u2 to obtain u0 in a similar fashion as in (3.14). We set

vi(x) = Θi(x) + 2πki(x) + πH1(λi[ui(x) − (Θi(x) + 2πki(x))]),

where Θi is a smooth branch of θi, and ki : W → Z is similar as in (3.14). In this simulation
we choose λi = 3/(2π) to obtain

2∩
i=1

{x ∈ W ; |vi(x) − (Θi(x) + 2πki(x))| < π} = ∅,

and set u0(x) = v1(x) + v2(x) + π. In the simulation, we find annual ring around a1 and
a2, and spirals around a3 and a4 at t = 0.25 in Figure 3.15. We observe that the annual
rings dominate the surface as the time evolves (see the profile at t = 1.5 Figure 3.15).
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3.6. More general situation. In this subsection, we examine a more complex situa-
tion in which the number and the rotational orientation of the spirals connecting to each
screw dislocation are independently given. Figure 3.16 shows the evolution of a set of
spirals connecting to six screw dislocations. The evolution equation, location of centers,
and θ is as follows;

V = 5(1 − 0.03κ) (v∞ = 5, ρc = 0.03),

a1 = (−0.6,−0.5), a2 = (−0.4, 0.2), a3 = (−0.2, 0.5),

a4 = (0,−0.4), a5 = (0.2, 0), a6 = (0.4, 0.5),

θ(x) = − arg(x− a1) + 3 arg(x− a2) + 2 arg(x− a3)

+ arg(x− a4) − 3 arg(x− a5) − 2 arg(x− a6).

In this case all spirals associated with a2, a3 and a4 have the counter-clockwise orientations,
those of a1, a5 and a6 have the clockwise orientations, and a1, a2, . . . , a6 have 1, 3, 2, 1, 3,
and 2 spirals, respectively. The initial curve is given as Γ0 =

∪7
j=1 Lj, and

L1 ={ta1 + (1 − t)a2; t ∈ (0, 1)},
L2 ={a2 + t(−1, 0); t > 0},
L3 ={ta2 + (1 − t)a5; t ∈ (0, 1)},
L4 ={ta3 + (1 − t)a5; t ∈ (0, 1)},
L5 ={ta4 + (1 − t)a5; t ∈ (0, 1)},
L6 ={ta3 + (1 − t)a6; t ∈ (0, 1)},
L7 ={a6 + t(1, 0); t > 0}.

To construct u0 ∈ C(W ) satisfying Γ0 = {x; u0(x) − θ(x) ≡ 0 mod 2πZ} we describe
Lj = {x ∈ W ; uj(x) − θj(x) ≡ 0 mod 2πZ} with

u1 = u2 = u3 = u4 = u5 = u6 ≡ π, u7 ≡ 0,

θ1(x) = − arg(x− a1) + arg(x− a2),

θ2(x) = arg(x− a2),

θ3(x) = arg(x− a2) − arg(x− a5),

θ4(x) = arg(x− a3) − arg(x− a5),

θ5(x) = arg(x− a4) − arg(x− a5),

θ6(x) = arg(x− a3) − arg(x− a6),

θ7(x) = − arg(x− a6).

We next construct a modified initial data vi from ui and introduce a slope set Λi similarly
as in previous sections, i.e., set

vi(x) =Θi(x) + 2πki(x) + πH1(λi{ui(x) − (Θi(x) + 2πki(x))})
Λi ={x ∈ W ; |vi(x) − (Θi(x) + 2πki(x))| < π},

where Θi is a smooth branch of θi, ki : W → Z is such that

−π ≤ ui(x) − (Θi(x) + 2πki(x)) < π for x ∈ W,
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Figure 3.16. Evolution of multiple spirals connecting to six centers with
multiple spirals by V = 5(1 − 0.03κ). Left top, right top, left bottom and
right bottom figures are level sets at time t = 0, 0.05, 0.2, and 0.5, respec-
tively.

and λi > 1/π is a constant satisfying Λi ∩ Λj = ∅ for i, j provided that i 6= j. For
calculation in figure 3.16 we choose

λ1 = λ2 =
5

π
, λ3 = λ4 =

10

π
, λ5 = λ6 = λ7 =

3

π
.

We set the initial data as

u0(x) =
7∑

i=1

vi(x) + 6π.

In this simulation, the surface around a2 and a4 grows the fastest. It is due to the fact
that the surface near a screw dislocation with m spirals evolves (grows) with m times the
rate of that near a screw dislocation with a single spiral.

4. Conclusion

We have introduced a flexible level set formulation for modeling multiple spirals that
possibly have different rotational orientations. Our formulation embeds a set of spirals as
the zero level set of the difference of an explicitly defined sheet structure function and an
auxiliary function, which is computed numerically. As the first author [Oht03] or Goto,
Nakagawa and the first author [GNO08] studied, our model has the potential to verify
the dynamical behavior of spirals rigorously.
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The crucial idea of our formulation comes from a sheet structure function due to
Kobayashi [Kob10]. The sheet structure function is a linear combination of arguments
with respect to the centers of screw dislocations in the domain. Our formulation had been
studied in [Oht03] or [GNO08], however there were no explanations on the coefficients from
physical view points in those papers. In this paper, we clarify how the coefficients in the
linear combination are determined from a given physical configuration. We also give a
simple and practical way to construct initial auxiliary functions.

Our formulation requires only a single equation model for evolution of spirals by (1.1)–
(1.2). In this regard, our formulation is more computationally tractable. We have verified
the results in Burton et al [BCF51] as well as in [Sme00]. Furthermore, we presented
our simulations involving multi-centers and multi-spirals configurations and non-trivial
merging. Such situations seem to pose computational challenges for other approaches,
including the one proposed in[Sme00]. We point out here that in a forthcoming paper
[GOT], we shall discuss the existence of what we called inactive pairs (pairs of stationary
spirals) and show analytically the stability of bunched steps.

Our model can easily be generalized to describe anisotropic evolution of spirals, and
thus it can describe the evolution with interlacing patterns. Finally, our formulation has
the potential to be generalized to model moving or nucleation of spiral centers. From
the view point of physical experiments it is required to construct a system which implies
an evolution or a flow of the concentration of atoms on the surface or in environment
phase. To know the exact mechanism of generation of hollow cores we have to construct
a formulation of spirals with tip motion. To adjoin our method to the above situations,
we need additional modelings. (See [SB82] for an interlacing pattern or a hollow core.)
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