Skip to main content

Advertisement

Log in

The Entropy Satisfying Discontinuous Galerkin Method for Fokker–Planck equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In Liu and Yu (SIAM J Numer Anal 50(3):1207–1239, 2012), we developed a finite volume method for Fokker–Planck equations with an application to finitely extensible nonlinear elastic dumbbell model for polymers subject to homogeneous fluids. The method preserves positivity and satisfies the discrete entropy inequalities, but has only first order accuracy in general cases. In this paper, we overcome this problem by developing uniformly accurate, entropy satisfying discontinuous Galerkin methods for solving Fokker–Planck equations. Both semidiscrete and fully discrete methods satisfy two desired properties: mass conservation and entropy satisfying in the sense that these schemes are shown to satisfy the discrete entropy inequality. These ensure that the schemes are entropy satisfying and preserve the equilibrium solutions. It is also proved the convergence of numerical solutions to the equilibrium solution as time becomes large. At the finite time, a positive truncation is used to generate the nonnegative numerical approximation which is as accurate as the obtained numerical solution. Both one and two-dimensional numerical results are provided to demonstrate the good qualities of the schemes, as well as effects of some canonical homogeneous flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newton. Fluid Mech. 139(3), 153–176 (2006)

    Article  MATH  Google Scholar 

  2. Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids Part II: Transient simulation using space-time separated representations. J. Non-Newton. Fluid Mech. 144(2–3), 98–121 (2007)

    Article  MATH  Google Scholar 

  3. Arnold, A., Carrillo, J.A., Manzini, C.: Refined long-time asymptotics for some polymeric fluid flow models. Commun. Math. Sci. 8(3), 763–782 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Partial Differ. Equ. 26(1–2), 43–100 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5):1749–1779, (2001/02)

  7. Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31, 45–59 (1977)

    Article  MATH  Google Scholar 

  8. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Baumann, C.E., Oden, J.T.: A discontinuous \(hp\) finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175(3–4), 311–341 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Buet, C., Dellacherie, S.: On the Chang and Cooper scheme applied to a linear Fokker–Planck equation. Commun. Math. Sci. 8(4), 1079–1090 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Buet, C., Dellacherie, S., Sentis, R.: Numerical solution of an ionic Fokker–Planck equation with electronic temperature. SIAM J. Numer. Anal. 39(4), 1219–1253 (2001). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  12. Barrett, J.W., Süli, E.: Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers. ESAIM M2AN 46, 949–978 (2012)

    Article  MATH  Google Scholar 

  13. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chang, J.S., Cooper, G.: A practical difference scheme for Fokker–Planck equations. J. Comput. Phys. 6(1), 1–16 (1970)

    Article  MATH  Google Scholar 

  15. Chauvière, C., Lozinski, A.: Simulation of complex viscoelastic flows using Fokker–Planck equation: 3D FENE model. J. Non-Newton. Fluid Mech. 122(1–3), 201–214 (2004)

    Article  MATH  Google Scholar 

  16. Chauvière, C., Lozinski, A.: Simulation of dilute polymer solutions using a Fokker–Planck equation. J. Comput. Fluids 33(5–6), 687–696 (2004)

    Article  MATH  Google Scholar 

  17. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2007)

    Article  MathSciNet  Google Scholar 

  18. Chupin, L.: The FENE model for viscoelastic thin film flows. Methods Appl. Anal. 16(2), 217–261 (2009)

    MATH  MathSciNet  Google Scholar 

  19. Chupin, L.: The FENE viscoelastic model and thin film flows. C. R. Math. Acad. Sci. Paris 347(17–18), 1041–1046 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chupin, L.: Fokker–Planck equation in bounded domain. Ann. Inst. Fourier (Grenoble) 60(1), 217–255 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cockburn, B., Dawson, C.: Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multi-dimensions. In: Whiteman, J.R. (ed.) Proceedings of the Conference on the Mathematics of Finite Elements and Applications, MAFELAP X, pp. 225–238. Elsevier, New York (2000)

  22. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)

    MATH  MathSciNet  Google Scholar 

  23. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

    MATH  MathSciNet  Google Scholar 

  26. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Du, Q., Liu, C., Yu, P.: FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4(3), 709–731 (2005). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  28. Fan, X.-J.: Viscosity, first normal-stress coefficient, and molecular stretching in dilute polymer solutions. J. Non-Newton. Fluid Mech. 17(2), 125–144 (1985)

    Article  MATH  Google Scholar 

  29. Gassner, G., Lörcher, F., Munz, C.-D.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous galerkin schemes. J. Comput. Phys. 224(2), 1049–1063 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Herrchen, M., Öttinger, H.C.: A detailed comparison of various FENE dumbbell models. J. Non-Newton. Fluid Mech. 68(1), 17–42 (1997)

    Article  Google Scholar 

  31. Hyon, Y., Du, Q., Liu, C.: An enhanced macroscopic closure approximation to the micro-macro FENE model for polymeric materials. Multiscale Model. Simul. 7(2), 978–1002 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hesthaven, J., Warburton, T.: Nodal Discontinuous Galerkin Methods, Algorithms, Analysis and Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  33. Jourdain, B., Le Bris, C., Lelièvre, T., Otto, F.: Long time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 181(1), 97–148 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Jourdain, B., Lelièvre, T.: Mathematical analysis of a stochastic differential equation arising in the micro-macro modelling of polymeric fluids. In: Probabilistic Methods in Fluids, pp. 205–223. World Sci. Publ., River Edge, NJ (2003)

  35. Jourdain, B., Lelièvre, T., Le Bris, C.: Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal. 209(1), 162–193 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Knezevic, D.J., Süli, E.: Spectral Galerkin approximation of Fokker–Planck equations with unbounded drift. M2AN Math. Model. Numer. Anal. 43(3), 445–485 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Li, B.: Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Springer, London (2006)

    MATH  Google Scholar 

  38. Larsen, E.W., Levermore, C.D., Pomraning, G.C., Sanderson, J.G.: Discretization methods for one-dimensional Fokker–Planck operators. J. Comput. Phys. 61(3), 359–390 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  39. Le Bris, C., Lelièvre.: Micro-macro models for viscoelastic fluids: modeling, mathematics and numerics. arXiv:1102.0325v1[math-ph] (2011)

  40. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47(1), 675–698 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Liu, H., Shin, J.: The Cauchy–Dirichlet problem for the FENE dumbbell model of polymeric flows. SIAM J. Math. Anal. 44(5), 3617–3648 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  42. Liu, H., Shin, J.: Global well-posedness for the microscopic FENE model with a sharp boundary condition. J. Differ. Equ. 252(1), 641–662 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)

    MathSciNet  Google Scholar 

  44. Liu, H., Yu, H.: An entropy satisfying conservative method for the Fokker–Planck equation of FENE dumbbell model for polymers. SIAM J. Numer. Anal. 50(3), 1207–1239 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  45. Liu, H., Yu, H.: Maximum-principle-satisfying third order discontinuous Galerkin schemes for Fokker–Planck equations. SIAM J. Sci. Comput. (2013). http://www.ams.org/amsmtgs/2216_abstracts/1097-65-286.pdf

  46. Lozinski, A., Chauvière, C.: A fast solver for Fokker–Planck equation applied to viscoelastic flows calculations: 2D FENE model. J. Comput. Phys. 189(2), 607–625 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  47. Masmoudi, N.: Well-posedness for the FENE dumbbell model of polymeric flows. Commun. Pure Appl. Math. 61(12), 1685–1714 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  48. Masmoudi, N.: Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Invent. Math. 191(2), 427–500 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  49. Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker–Planck equation: an interplay between physics and functional analysis. Phys. Funct. Anal. Mat. Contemp. (SBM) 19, 1–29 (1999)

    MathSciNet  Google Scholar 

  50. Oden, J.T., Babuška, I., Baumann, C.E.: A discontinuous \(hp\) finite element method for diffusion problems. J. Comput. Phys. 146(2), 491–519 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  51. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, (1973)

  52. Riviére, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, Theory and Implementation, SIAM (2008)

  53. Samaey, G., Lelièvre, T., Legat, V.: A numerical closure approach for kinetic models of polymeric fluids: exploring closure relations for FENE dumbbells. Comput. Fluids 43, 119–133 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  54. Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability. In Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Numerical Solutions of Partial Differential Equations, pp. 149–201, Birkhauser Basel (2009)

  55. Shen, J., Yu, H.J.: On the approximation of the Fokker–Planck equation of FENE dumbbell model, I: a new weighted formulation and an optimal Spectral-Galerkin algorithm in 2-D. SIAM J. Numer. Anal. 50(3), 1136–1161 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  56. van Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. In: Proceedings of 17th AIAA Computational Fluid Dynamics Conference (6 June 2005), AIAA-2005-5108 (2005)

  57. Wang, H., Li, K., Zhang, P.: Crucial properties of the moment closure model FENE-QE. J. Non-Newton. Fluid Mech. 150(2–3), 80–92 (2008)

    Article  MATH  Google Scholar 

  58. Warner, H.R.: Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem. Fundam. 11(3), 379–387 (1972)

    Article  MathSciNet  Google Scholar 

  59. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  60. Zhang, H., Zhang, P.: Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ration. Mech. Anal. 181(2), 373–400 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the National Science Foundation under Grant DMS09-07963 and DMS13-12636

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yu, H. The Entropy Satisfying Discontinuous Galerkin Method for Fokker–Planck equations. J Sci Comput 62, 803–830 (2015). https://doi.org/10.1007/s10915-014-9878-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9878-1

Keywords

Mathematics Subject Classification

Navigation