Skip to main content
Log in

Simple and Efficient Determination of the Tikhonov Regularization Parameter Chosen by the Generalized Discrepancy Principle for Discrete Ill-Posed Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Discrete ill-posed problems where both the coefficient matrix and the right hand side are contaminated by noise appear in a variety of engineering applications. In this paper we consider Tikhonov regularized solutions where the regularization parameter is chosen by the generalized discrepancy principle (GDP). In contrast to Newton-based methods often used to compute such parameter, we propose a new algorithm referred to as GDP-FP, where derivatives are not required and where the regularization parameter is calculated efficiently by a fixed-point iteration procedure. The algorithm is globally and monotonically convergent. Additionally, a specialized version of GDP-FP based on a projection method, that is well-suited for large-scale Tikhonov problems, is also proposed and analyzed in detail. Numerical examples are presented to illustrate the effectiveness of the proposed algorithms on test problems from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ang, D.D., Gorenflo, R., Le, V.K., Trong, D.D.: Moment Theory and Some Inverse Problems in Potential Theory and Heat Conduction, Lect. Notes Math. 1792. Springer, Berlin (2002)

  2. Bazán, F.S.V.: Fixed-point iterations in determining the Tikhonov regularization parameter. Inverse Probl. 24, 1–15 (2008)

    Article  Google Scholar 

  3. Bazán, F.S.V., Francisco, J.B., Leem, K.H., Pelekanos, G.: A maximum product criterion as a Tikhonov parameter choice rule for Kirsch’s factorization method. J. Comput. Appl. Math. 236, 4264–4275 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bazán, F.S.V., Borges, L.S.: GKB-FP:an algorithm for large-scale discrete ill-posed problems. BIT 50(3), 481–507 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bazán, F.S.V., Cunha, M.C., Borges, L.S.: Extension of GKB-FP to large-scale general-form Tikhonov regularization. Numer. Linear Algebra Appl. 21, 316–339 (2014)

    Article  MathSciNet  Google Scholar 

  6. Björck, Å.: A bidiagonalization algorithm for solving ill-posed systems of linear equations. BIT 28, 659–670 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chung, J., Nagy, J.G., O’Leary, D.P.: A weighted-GCV method for Lanczos-hybrid regularization. Electron. Trans. Numer. Anal. 28, 149–167 (2008)

    MathSciNet  Google Scholar 

  8. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, New York (1992)

    Book  MATH  Google Scholar 

  9. Colton, D., Piana, M., Potthast, R.: A simple method using Morozov’s discrepancy principle for solving inverse scattering problems. Inverse Probl. 13, 1477–1493 (1999)

    Article  MathSciNet  Google Scholar 

  10. Eldén, L.: A weighted pseudoinverse, generalized singular values, and constrained least square problems. BIT 22, 487–502 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems (Mathematics and its Applications), vol. 375. Kluwer Academic Publishers Group, Dordrecht (1996)

    Book  Google Scholar 

  12. Golub, G.H., Hansen, P.C., O’Leary, D.P.: Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl. 21, 185–194 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  14. Hansen, P.C.: Regularization tools: a matlab package for analysis and solution of discreet Ill-posed problems. Numer. Algorithms 6, 1–35 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  16. Hochstenbach, M.E., Reichel, L.: An iterative method for Tikhonov regularization with a general linear regularization operator. J. Integral Equ. Appl. 22, 463–480 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kirsch, A.: Characterization of the shape of a scattering obstacle using the spectral data of the far field operator. Inverse Probl. 14, 1489–1512 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lampe, J., Voss, H.: Large-scale Tikhonov regularization of total least squares. J. Comput. Appl. Math. 238, 95–108 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Leem, K.H., Pelekanos, G., Bazán, F.S.V.: Fixed-point iterations in determining a Tikhonov regularization parameter in Kirsch’s factorization method. Appl. Math. Comput. 216, 3747–3753 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lu, S., Pereverzev, S.V., Tautenhahn, U.: Regularized total least squares: computational aspects and error bounds. SIAM J. Matrix Anal. Appl. 31, 918–941 (2009)

    Article  MathSciNet  Google Scholar 

  21. Lu, S., Pereverzev, S.V., Shao, Y., Tautenhahn, U.: On the generalized discrepancy principle for Tikhonov regularization in Hilbert Scales. J. Integral Equ. Appl. 22(3), 483–517 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Markovsky, I., Van Huffel, S.: Overview of total least squares methods. Signal Process. 87, 2283–2302 (2007)

    Article  MATH  Google Scholar 

  23. Morozov, V.A.: Regularization Methods for Solving Incorrectly Posed Problems. Springer, New York (1984)

    Book  Google Scholar 

  24. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  25. Paige, C.C., Saunders, M.A.: Algorithm 583. LSQR: sparse linear equations and least squares problems. ACM Trans. Math. Softw. 8(2), 195–209 (1982)

    Article  MathSciNet  Google Scholar 

  26. Reichel, L., Ye, Q.: Simple square smoothing regularization operators. Electron. Trans. Numer. Anal. 33, 63–83 (2009)

    MathSciNet  Google Scholar 

  27. Renaut, R.A., Guo, G.: Efficient algorithms for solution of regularized total least squares. SIAM J. Matrix Anal. Appl. 21, 457–476 (2005)

    MathSciNet  Google Scholar 

  28. Sima, D., Van Huffel, S., Golub, G.H.: Regularized total least squares based on quadratic eigenvalue problems solvers. BIT 44, 793–812 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Tautenhahn, U.: Regularization of linear ill-posed problems with noisy right hand side and noisy operator. J. Inverse Ill Posed Probl. 16, 507–523 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tikhonov, A.N., Arsenin, V.Y.: Solution of Ill-Posed Problems. Wiley, New York (1977)

    Google Scholar 

  31. Vinokurov, V.A.: Two notes on the choice of regularization parameter. USSR Comput. Math. Math. Phys. 12(2), 249–253 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fermín S. Viloche Bazán.

Additional information

This work is supported by CNPq, Brazil, Grants 308709/2011-0, 477093/2011-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazán, F.S.V. Simple and Efficient Determination of the Tikhonov Regularization Parameter Chosen by the Generalized Discrepancy Principle for Discrete Ill-Posed Problems. J Sci Comput 63, 163–184 (2015). https://doi.org/10.1007/s10915-014-9888-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9888-z

Keywords

Navigation