Skip to main content
Log in

Topological Derivative for the Inverse Conductivity Problem: A Bayesian Approach

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The employment of topological derivative concept is considered to propose a new optimization algorithm for the inverse conductivity problem. Since this inverse problem is nonlinear and ill-posed it is necessary to incorporate a prior knowledge about the unknown conductivity. In particular, we apply the Bayes theorem to add the assumption that we have just one small ball-shaped inclusion, which must be at a certain distance from the boundary of the domain. As the main emphasis of this paper is to investigate numerically the proposed approach, we shall use the meshless method of fundamental solutions to present some numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alves, C.J., Colaço, M.J., Leitão, V.M.A., Martins, N.F.M., Orlande, H.R.B., Roberty, N.C.: Recovering the source term in a linear diffusion problem by the method of fundamental solutions. Inverse Probl. Sci. Eng. 16, 1005–1021 (2005)

    Article  Google Scholar 

  2. Ammari, H., Kang, H.: Reconstruction of Small Inhomogeneities from Boundary Measurements, 429 pages. Springer, Berlin (2004)

    Book  Google Scholar 

  3. Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216(2), 573–588 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berger, J.R., Karageorghis, A.: The method of fundamental solutions for heat conduction in layered materials. Int. J. Numer. Meth. Eng. 45, 1681–1694 (1999)

    Article  MATH  Google Scholar 

  5. Bonnet, M.: Higher-order topological sensitivity for 2-D potential problems. Application to fast identification of inclusions. Int. J. Solids Struct. 46, 2275–2292 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borcea, L.: Electrical impedance tomography. Inverse Probl. 18, R99–R136 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ciulli, S., Pidcock, M.K., Sebu, C.: An integral equation method for the inverse conductivity problem. Phys. Lett. A 325, 253–267 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Comino, L., Gallego, R., Rus, G.: Combining topological sensitivity and genetic algorithms for identification inverse problems in anisotropic materials. Comput. Mech. 41, 231–242 (2007)

    Article  Google Scholar 

  9. Eschenauer, H., Kobelev, V., Schumacher, A.: Bubble method for topology and shape optimization of structures. J. Struct. Optim. 8, 42–51 (1994)

    Article  Google Scholar 

  10. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hintermüller, M., Laurain, A.: Electrical impedance tomography: from topology to shape. Control Cybern. 37(4), 913–933 (2008)

    MATH  Google Scholar 

  12. Hintermüller, M., Laurain, A., Novotny, A.A.: Second-order topological expansion for electrical impedance tomography. Adv. Comput. Math. 36, 235–265 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Idier, J. (ed.): Bayesian Approach to Inverse Problems, 381 pp. ISTE, London (2008)

  14. Isakov, V.: Inverse Problems for Partial Diferential Equations, 284 pp. Springer, New York (1998)

    Book  Google Scholar 

  15. Isakov, V., Powell, J.: On inverse conductivity problem with one measurement. Inverse Probl. 6, 311–318 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jin, B., Marin, L.: The method of fundamental solutions for inverse source problems associated with the steady-state heat conduction. Int. J. Numer. Meth. Eng. 69, 1570–1589 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, 339 pp. Springer, New York (2005)

    Google Scholar 

  18. Kang, H., Seo, J.K.: The layer potential technique for the inverse conductivity problem. Inverse Probl. 12, 267–278 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Karageorghis, A., Lesnic, D.: The method of fundamental solutions for the inverse conductivity problem. Inverse Probl. Sci. Eng. 18, 567–583 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Karageorghis, A., Lesnic, D., Marin, L.: A survey of applications of the MFS to inverse problems. Inverse Probl. Sci. Eng. 19, 309–336 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Knowles, I.: A variational algorithm for electrical impedance tomography. Inverse Probl. 14, 1513–1525 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kohn, R.V., McKenney, A.: Numerical implementation of a variational method for electrical impedance tomography. Inverse Probl. 6, 389–414 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kohn, R., Vogelius, M.: Relaxation of a varional method for impedance computed tomography. Comm. Pure Appl. Math. 40(6), 745–777 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kozlov, V.A., Maz’ya, V.G., Movchan, A.B.: Asymptotic Analysis of Fields in Multi-Structures, 282 pp. Clarendon Press, Oxford (1999)

    Google Scholar 

  25. Kupradze, V.D., Aleksidze, M.A.: The method of functional equations for the approximate solution of certain boundary value problems. U.S.S.R. Comput. Math. Math. Phys. 4, 82–126 (1964)

    Article  MathSciNet  Google Scholar 

  26. Lesnic, D.: A numerical investigation of the inverse potential conductivity problem in a circular inclusion. Inverse Probl. Eng. 9, 1–17 (2001)

    Article  Google Scholar 

  27. Marin, L., Elliott, L., Ingham, D.B., Lesnic, D.: The boundary element method for the numerical recovery of a circular inhomogeneity in an elliptic equation. Eng. Anal. Boundary Elem. 28, 413–419 (2004)

    Article  MATH  Google Scholar 

  28. Novotny, A.A., Feijóo, R.A., Padra, C., Taroco, E.: Topological sensitivity analysis. Comput. Methods Appl. Mech. Eng. 192, 803–829 (2003)

    Article  MATH  Google Scholar 

  29. Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization, 412 pp. Springer, Berlin (2012)

    Google Scholar 

  30. Ramachandran, P.A.: Method of fundamental solutions: singular value decomposition analysis. Commun. Numer. Methods Eng. 18, 789–801 (2002)

    Article  MATH  Google Scholar 

  31. Rocha de Faria, J., Novotny, A.A., Feijóo, R.A., Taroco, E.: First- and second-order topological sensitivity analysis for inclusions. Inverse Probl. Sci. Eng. 17, 665–679 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rocha de Faria, J., Novotny, A.A.: On the second order topological asymptotic expansion. Struct. Multi. Optim. 39(6), 547–555 (2009)

    Article  MathSciNet  Google Scholar 

  33. Sokołowski, J., Zochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37, 1251–1272 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Stuart, A.M.: Inverse problems: a Bayesian perspective. Acta Numerica 19, 451–559 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, J., Zabaras, N.: Hierarchical Bayesian models for inverse problems in heat conduction. Inverse Probl. 21, 185–206 (2005)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author would like to thank CNPq-Science without Borders program for the financial support in this research. The hospitality shown by the University of Leeds is also gratefully acknowledged. The comments made by the referee are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rocha de Faria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Faria, J.R., Lesnic, D. Topological Derivative for the Inverse Conductivity Problem: A Bayesian Approach. J Sci Comput 63, 256–278 (2015). https://doi.org/10.1007/s10915-014-9891-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9891-4

Keywords

Navigation