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Abstract

We develop an efficient and robust numerical scheme to compute multi-fronts in one-dimensional

Real Ginzburg-Landau equations that range from well-separated to strongly interacting and colliding.

The scheme is based on the global centre-manifold reduction where one considers an initial sum of

fronts plus a remainder function (not necessarily small) and applying a suitable projection based on the

neutral Eigenmodes of each front. Such a scheme efficiently captures the weakly interacting tails of the

fronts. Furthermore, as the fronts become strongly interacting, we show how they may be added to the

remainder function to accurately compute through collisions. We then present results of our numerical

scheme applied to various real Ginzburg Landau equations where we observe colliding fronts, travelling

fronts and fronts converging to bound states. Finally, we discuss how this numerical scheme can be

extended to general PDE systems and other multi-localised structures.

1 Introduction

Localised structures, such as fronts or pulses, appear in a range of physical situations from pulse propagation

of impulses in nerve fibers in mathematical biology, to modelling pulse propagations in optical fibers, and

weather fronts [1, 12]; see Figure 1 (a) and (b) for examples of fronts and backs where the “marker quantity”

u(x) connects two different quiescent states in space x. Frequently, such localised structures appear together

(called multi-pulses or multi-fronts1) where one expects the fronts to interact with each other via their

exponentially decaying tails inducing and influencing the movement of the fronts; see Figure 1 (c) for an

example of a multi-front/back solution. The development of fast, efficient and robust numerical algorithms

for a one-dimensional pulse/front has been largely resolved. A common approach (as implemented in the

software package AUTO and HOMCONT [4]) is to find approximations of a pulse/front on a large but

bounded domain and solve a two-point boundary value problem with projection boundary conditions [19].

Various standard methods for solving the two-point boundary value problem such as shooting, or orthogonal

collocation can then be used to yield highly accurate solutions [2]. This approach has been used on a

variety of different problems in order to use path-following routines to explore the bifurcation structure of

pulses/fronts; see for example [4] and references therein.

The computation of well-separated multiple pulses or fronts remains a very challenging numerical problem

due to the interaction of the tails of the pulses/fronts being exponentially small in the separation distance.

In particular, the dynamics of weakly interacting pulses/fronts are known to have highly intricate structures

that require very accurate numerics in order to capture them; see for example [1, 18, 26]. Several advances

in the numerical computation of stationary one-dimensional multi-pulses have been made in ODEs. One

approach to address this problem has been to use Lin’s method to set-up a boundary value problem where

1Throughout this paper we will use the terms front and kink interchangeably and similarly for back and anti-kink.
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Figure 1: (a) Localised structures anti-kink (back), (b) a kink (front) and (c) a multi-kink solution showing the

interaction of the fronts via their tails.

one looks for zeros of an algebraic function using path-following routines and has been implemented in

HOMCONT; see [16].

For time-dependent well separated multi-pulses/fronts in PDEs, a standard scheme is to consider the linear

combination of several single translated pulses/fronts and apply a projection based on the neutral modes

of each translated pulse/front [5, 8, 21]. This projection typically leads to a set of ODEs describing the

location of each pulse/front allowing for very accurate computation of the interaction terms and high order

ODE algorithms to be used. One may also look at the steady states of the resulting ODE system via the

projection to understand the dependence of the multi-pulses/fronts with respect to parameters.

Several authors have looked at strongly interacting localised structures in ODEs/PDEs to understand the

effect of collisions; see [3, 11, 15]. Typical strong-interaction dynamics observed from collisions range from

repulsion, annihilation, scattering of pulses and the generation of new pulses; see [13, 14]. For strongly

interacting localised structures the interaction between the states becomes O(1) and standard numerical

algorithms (such as Crank-Nicholson, exponential time-stepping with spectral collocation, method of lines

etc.) can be used to efficiently compute such collisions. However, these algorithms become inefficient when

the localised structures become well-separated.

Our aim is to develop an efficient and robust numerical scheme for computing multi-fronts that allows

us to simulate and track multi-front states where the fronts may range from well-separated to strongly-

interacting and colliding. Our scheme is based on the Global centre-manifold reduction of Zelik et al. [27]

(see also [6, 17, 20]) where they consider a linear combination of several well-separated fronts/pulses plus

a remainder function and apply a suitable projection based on the neutral Eigenmodes of each front/pulse.

This reduction is in the same spirit of Lin’s method. The reduction leads to a fast-slow ODE/PDE system

where the ODEs describe the evolution of the location of each well-separated front and the PDE describes

the evolution of the remainder function. Such a system is found to have several nice numerical properties

that allow us to quickly evolve large numbers of multi-fronts. As the fronts become strongly-interacting the

ODE/PDE system becomes ill-posed since the original assumption of well-separated fronts breaks down.

However, one can detect when the ODE/PDE system becomes ill-posed, stop the simulation and remove the

locations of the strongly-interacting fronts from the ODE/PDE system while adding the colliding fronts to

the remainder function and solving a new ODE/PDE system. Hence, we maintain the numerical advantages

of the ODE/PDE system throughout the simulation.

In order to demonstrate how the numerical scheme works in practice, we apply it to several Real Ginzburg-

Landau (RGL) equations where we investigate the numerical advantages of the scheme over a standard

method of lines scheme. In particular, we consider a PDE of the form

ut = uxx + f(u), x ∈ R, (1.1)

where u = u(x, t) and f ∈ C2(R) is a non-linear function that satisfies

f(1) = f(−1) = 0, f ′(±1) < 0, (1.2a)

∃! η ∈ (−1, 1) s.t. f(η) = 0, and, (1.2b)

f ′(η) > 0. (1.2c)
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The kink profile u(x, t) := V (ξ), where ξ = ct− x, when substituted in (1.1) solves

Vξξ + cVξ + f(V ) = 0, V ′(ξ) > 0, lim
ξ→±∞

V (ξ) = ±1, (1.3)

and both the velocity c and the profile V are uniquely determined by (1.3); see [25] for more details. In

particular, this profile satisfies the identity

c

∫ ∞
−∞

V ′(ξ)2 dξ = F (−1)− F (+1),

where F (z) :=
∫ z

0
f(u) du is the antiderivative of f and this determines the direction of motion of the kink.

The equation (1.1) also possesses an anti-kink (or back) solution that moves with the same velocity c, but

in the opposite direction. We denote the kink/front solution as u+(x, t) = V (x− ct) and the anti-kink/back

solution as u−(x, t) = V (−x− ct); see Figure 1 (a) & (b). Moreover, it also follows from the monotonicity of

the kink (V ′ > 0) and Perron-Frobenius theory that the kink is locally stable; see [25] and references therein.

In particular, the linearized operator

Lc := ∂2
ξ + c∂ξ + f ′(V (ξ)),

considered as an unbounded operator in L2(R) with the domain D = H2(R) (see for example [9]), has a

simple zero eigenvalue with the corresponding eigenvector ϕ(ξ) := V ′(ξ) and the rest of the spectrum is

negative and separated from zero. The nonlinear stability of the kink u+(x, t) implies that, for any initial

data u0(x) satisfying

‖u0 − V ‖L∞(R) ≤ δ,

for sufficiently small δ > 0, there exists x0 = x0(u0) such that the corresponding solution u(x, t) satisfies

‖u(·, t)− V (· − ct− x0)‖L∞(R) ≤ Ce−αt,

for some positive constants C and α. In other words, the local dynamics of (1.1) near the kink u+(x, t)

is normally hyperbolic. The kink possesses a one-dimensional neutral direction generated by ϕ(x − ct)

(corresponding to the spatial shifts of the kink) and is exponentially stable in the transversal directions, w,

that satisfy 〈w,ψ〉 = 0 where ψ = ψ(ξ) is the adjoint eigenfunction of Lc and solves the following problem

L∗cψ = (∂2
ξ − c∂ξ + f ′(V (ξ)))ψ = 0, 〈ϕ,ψ〉 :=

∫ ∞
−∞

ϕ(ξ)ψ(ξ) dξ = 1, (1.4)

see [25], [27] and references therein for more details.

Analogously to the kink u+(x, t), the anti-kink u−(x, t) is also locally stable.

We will apply our methods to the following RGL type equations where f in (1.1) is defined as follows

RGL1: f(u) = u− u3,

RGL2: f(u) = u− u3 + ε(u2 − 1),

RGL3: f(u) = u− u3 + ε cos(x/2).

The first case, RGL1, is the standard real Ginzburg-Landau equation that possesses an explicit single sta-

tionary front solution where multi-fronts attract one another leading to collisions and annihilations; see [17].

RGL2 has an explicit travelling front solution where the fronts either attract or repel one another with colli-

sions leading to annihilation for ε < 1. For ε > 1, the spatially homogeneous state u = +1 becomes unstable

where it is not known how multi-fronts evolve and we will investigate this region of parameter space. The

third equation, RGL3, possesses bound state fronts where it is possible that annihilation of fronts do not

occur, depending on the initial conditions.
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We study the weak interaction in multi-kink structures governed by equation (1.1) starting from the initial

data

u0(x) = VΣ0(x) + w0(x) :=

[
n∑
i=1

V
(
(−1)i(x− di(0))

)
+ h(n)

]
+ w0(x), h(n) :=

1 + (−1)n

2
, (1.5)

where n ∈ N and d1(0) < d2(0) < · · · < dn(0) are the initial positions of the kinks/anti-kinks (assumed

be well-separated, i.e., di+1(0) − di(0) � 1) and w0 is a small remainder, say, in the L∞(R) norm. The

corrector h(n) is necessary here in order to guarantee that multi-front structure VΣ0 from (1.5) satisfies the

assumption

lim
x→±∞

VΣ0
(x) = ±1.

We seek the solution of (1.1) started from (1.5) in the following natural form:

u(x, t) := VΣ(x, t) + w(x, t) =

n∑
i=1

V
(
(−1)i(x− di(t))− ct

)
+ h(n) + w(x, t), (1.6)

where the functions Di(t) := di(t) − (−1)ict describe the evolution of the kink/anti-kink positions at time

t, the remainder w(x, t) remains small (again, say, in the L∞(R) norm) and the time derivatives d′i(t) are

also small due to the assumption that fronts are well-separated. Thus, (1.6) describes the so-called weak

interaction of kink/antikinks and the limit case w = 0 formally corresponds to the non-interacting kinks.

It is well-known, see [6, 17, 20, 27], that the solution u(x, t) in the form (1.6) exists indeed for all times t ≥ 0

such that well-separation condition

min
1≤i≤n−1

{|Di+1(s)−Di(s)|} > Γ� 1, 0 ≤ s ≤ t, Γ ∈ R. (1.7)

Moreover, there exists an n-dimensional invariant center manifold over the base

BΓ := {D ∈ Rn, min
1≤i≤n−1

{|Di+1 −Di|} > Γ}, D(t) := (D1(t), · · · , Dn(t)),

which consist of such solutions and any other solution starting from the small neighborhood of the mani-

fold approaches the manifold exponentially fast. Thus, the dynamics of interacting well-separated kinks is

finite-dimensional and can be described by the evolution of the kink positions D(t) := (D1(t), · · · , Dn(t)).

Following the general centre manifold reduction scheme, we derive the system of ODEs describing the evolu-

tion of the kink positions Di coupled to a PDE that describes the fast evolution of the remainder w(x, t); see

§2.2. The coupled ODE/PDE system described will be used for the high precision numerical simulations.

If fronts become too close together, the multi-kink structure (1.6) breaks down and the corresponding fronts

collide, see e.g., [17]. We show how to monitor the break down and stop at an appropriate point where a

new multi-kink structure (1.6) can be computed with w now including the colliding kinks. A major difficulty

is that w needs to be orthogonal to the adjoint eigenfunctions of the remaining well-separated kinks and we

show how one can overcome this difficulty to yield a new reduced ODE/PDE system to evolve.

Crucial to the numerical scheme working is the accurate computation of a single front/back and its neutral

Eigenfunction such that the projected ODE/PDE system may correctly capture the weakly interacting tails of

the fronts. We show how to overcome this problem and control all the errors of the simulation to an absolute

error of approximately standard machine precession. Finally, we describe how this numerical scheme may

be applied to other multi-localised states and PDE systems.

The paper is outlined as follows. In §2 we give an overview of the standard time stepping scheme (SS)

and projected system scheme (PS) that will use and compare for evolving multi-kinks in three RGL-type

equations. In §3 we present our numerical results and comparison of the two schemes. Finally, in §4 we draw

conclusions and outline extensions of the projected system to other PDE systems.
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2 Numerical Method

In this section we describe the numerical schemes we will use to evolve multi-fronts solutions of (1.1) and

carry out a comparison and validation of our projection scheme. The first scheme describes how we evolve

(1.1) with a standard method-of-lines scheme which we call a Standard time stepping Scheme (SS). The

second scheme we present is the Projection Scheme (PS) based on the Global centre-manifold reduction of

Zelik & Mielke [27].

To this end, we first introduce some notations and define the following

Vi = Vi(x, t) :=V ((−1)i(x− di(t))− ct), (2.1)

ϕi = ϕi(x, t) :=∂xVi = (−1)iV ′((−1)i(x− di(t))− ct), (2.2)

ψi = ψi(x, t) :=(−1)iψ((−1)i(x− di(t))− ct). (2.3)

2.1 Standard time stepping (SS) Scheme and retrieving the kink positions

In this section we explain how we employ a method-of-lines approach to simulating (1.1) with initial condi-

tion (1.5). First, we truncate the spatial domain from the real line to x ∈ [0, Lx] where Lx is some large

number and we apply homogeneous Neumann boundary conditions

ux(0) = ux(Lx) = 0.

Since the multi-front solution exists on the real line an error occurs due to this finite domain and boundary

conditions. However, it can be shown that the error will decay exponentially in the truncation parameter

Lx; see [19].

We discretise space xi = i∆x, i = 0, 1, . . . , Nx where ∆x = 1/Nx is the spatial step size and Nx + 1 is

the number of spatial mesh points. We approximate u(x, t) with ui(t) and the second spatial derivative is

approximated on the spatial mesh with 4th order finite-differences i.e.

uxx(xi) ≈ ∇4ui(t) =
−ui−2(t) + 16ui−1(t)− 30ui(t) + 16ui+1(t)− ui+2(t)

12∆x2
. (2.4)

The boundary conditions are imposed using ghost points; see [24] and setting u−2 = u2, u−1 = u1, uNx+1 =

uNx−1, and uNx+2 = uNx−2. This discretisation yields a large system of stiff ODEs to evolve of the form

uit = ∇4ui + f(ui), i = 0, 1, . . . , Nx with initial condition evaluated at the spatial mesh points. In order to

time evolve the stiff ODE system we employ a variable order, adaptive time stepping method as implemented

in matlab’s ode15s ODE solver; see [22, 23]. We choose to use matlab’s ode15s ODE solver for several

reasons. Firstly, the solver allows for stringent error tolerances to be maintained throughout the simulation.

Secondly, due to the multi-time-scale nature of the multi-kink interaction (slow movement of well-separated

kinks verses fast movement of strongly interacting kinks), we believe that an adaptive time-stepping method

will be significantly more efficient than a fixed time-stepping scheme. Thirdly, ode15s allows for event

detection e.g., front collision that we will exploit in our simulations.

We will now briefly describe the algorithm that is implemented in matlab’s ODE solver ode15s. Given an

ODE system of the form u′ = f(u, t), ode15s computes a time-step un+1 by solving the algebraic system

defined by the Numerical Differentiation Formula [22, 23]

k∑
m=1

γm∇mun + (1− κ)γk(un+1 − u[0]
n+1)− hf(un+1, tn+1) = 0,

for un+1 using a simplified Newton (chord) method with the initial value u
[0]
n+1 =

∑k
m=0∇mun, where k is

the order of the scheme i.e. k = 1, 2, 3, 4 or 5, γm =
∑m
j=1

1
j , ∇m is the m-th order finite-difference operator,

κ is chosen optimally to maintain stability while maximising the time-step and h is the time-step size. In

order to speed up the computation of the time-steps, we supply the analytical Jacobian for the righthand-side
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of the ODE system. More details about the matlab solver and methods used for both schemes can be found

in [10, 22].

Once the profile u(x, t) is obtained, we still need to retrieve the kink/antikink positions Di(t) from it; see

formula (1.6). Note however that there are in general many ways to present the solution u(x, t) in the form

(1.6) and we need to put extra conditions on the remainder w in order define the positions Di in a unique

way. Following the general scheme suggested in [27], we fix these extra assumptions in the form of the

orthogonality conditions to the cokernel elements of the corresponding kinks i.e.,

〈w,ψj〉 =

〈
u(·, t)−

n∑
i=1

Vi − h(n), ψj

〉
= 0, j = 1, · · · , n, (2.5)

where h(n) is defined in (1.5), u is the numerical approximation of (1.1). Equations (2.5) give a system of n

equations for the unknown kink positions Di = Di(t) to be determined at every time t. The Jacobi matrix

G of this system has the following entries:

Gij(D,w) = 〈ϕi, ϕj〉+ δij〈w, ∂xj
ψj〉, w := u−

n∑
i=1

Vi − h(n), (2.6)

where δij is a Kronecker delta, and we can see that this matrix is close to the identity if Dj are well separated

(see (1.7)) and w is small enough. Here we have implicitly used due to the non-degeneracy assumption

f ′(±1) 6= 0, and

|ϕ(z)|+ |ψ(z)| ≤ Ce−α|z|, z ∈ R (2.7)

for some positive C and α and by this reason, if the distances Dj are large enough, the integrals 〈ϕi, ψj〉
are close to zero for i 6= j (exponentially with respect to the distance between kinks). Thus, system (2.5) is

indeed uniquely solvable if the profile u(x, t) is close to the multi-kink profile (1.6) and the kink positions Dj

are uniquelly defined by the profile u. We use the Newton’s algorithm to solve this system numerically at each

time-step and use the kink positions Dj found on the previous discrete time step as initial approximations

for the next time step. We note that one can also just compute the kink positions Dj at a single time-step

by making a sensible guess of the kink positions.

This method of tracking the fronts positions is simple, fast and is done “post-process” so as to not slow

down the SS (we do not include the additional computational time for computing the kink positions in our

wall-time comparisons in §3.2). Thus, after fixing the extra orthogonality conditions on the remainder w,

the kink positions Di(t) indeed can be retrieved in a unique way from the solution profile u(x, t) if the kinks

are well-separated. We note that in the case of strongly interacting (colliding) kinks the above retrieving

procedure may fail since the determinant of the Jacobi matrix G may become zero.

2.2 Projection system (PS)

In this section we will describe the projection scheme for computing multi-fronts in (1.1). The relevant

stability conditions of the front in order to derive the projection system are stated in (1.2). Due to the

normalization condition on kernel element ϕ and co-kernel element ψ, we find for ϕi and ψi

〈ϕi, ψi〉 =

∫
R

ϕiψi dx = 1 for all t ∈ R, (2.8)

and since the adjoint function ψ solves equation (1.4), the functions ψi(x, t) solve

− ∂tψi = ∂xxψi + f ′(Vi)ψi − ∂xψid′i. (2.9)

We seek a solution of (1.1) of the form

u(x, t) = VΣ(x, t) + w(x, t), VΣ :=

n∑
i=1

Vi + h(n). (2.10)
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and assume that the remainder w is transversal to the neutral modes of all kinks, i.e. that

〈w,ψi〉 = 0 for all t and all i = 1, 2, · · · , n, (2.11)

which are exactly the orthogonality conditions (2.5) used in the standard scheme. Inserting (2.10) into (1.1)

and using that

∂tVi = ∂xxVi + f(Vi)− d′iϕi, for all i = 1, 2, · · · , n, (2.12)

we obtain

wt − wxx =

n∑
i=1

d′iϕi + f(VΣ + w)−
n∑
i=1

f(Vi). (2.13)

We now carry out a projection onto the neutral Eigenspace which is achieved by multiplying (2.13) with the

co-kernel elements ψi. To derive equations for di(t), we note that due to (2.9) and (2.11),

〈wt − wxx, ψi〉 =
d

dt
〈w,ψi〉+ 〈−∂tψi − ∂xxψi, w〉 = 〈f ′(Vi)w,ψi〉 − d′i〈w, ∂xψi〉. (2.14)

Thus, taking a scalar product of (2.13) with ψk, we get the desired system of ODEs

n∑
i=1

d′i〈ϕi, ψk〉+ d′k〈w, ∂xψk〉 = −

〈
f(VΣ + w)− f ′(Vk)w −

n∑
i=1

f(Vi), ψk

〉
. (2.15)

Note that this system is not resolved with respect to d′(t) := (d′1(t), · · · , d′n(t)) and a priori may be ill posed.

However, that is not the case when the kinks are well-separated and w is small enough. Indeed, the matrix

G(d,w) := [〈ϕi, ψj〉 − δij〈w, ∂xiψj〉]
n
i,j=1 , (2.16)

in the left-hand side of (2.15) coincides with the Jacobi matrix (2.6) and similarly the matrix is close to

the identity if the kinks are well-separated. On the other hand, the matrix G(d,w) may become very small

or even singular if some distances between kinks become small which indicates that the projection method

is no longer applicable. However, this does yield a sensible condition to stop the simulation i.e., when the

condition number of the G(d,w) matrix is large or the distance between any two fronts is less than a certain

tolerance. In our simulations we choose to stop the simulation when the distance between any two kinks is

dlim = 2. We will investigate this condition further in §3.

To initialise (2.14)-(2.15), we start with a given number n of fronts and set w ≡ 0. Evolving (2.14)-(2.15),

we find that the fronts either move away from each other, or approach one another. In order to compute

through collisions, we monitor the distance between each front and stop evolving (2.14)-(2.15) when any two

fronts reach a separation distance of dlim.

Namely, without loss of generality, we may assume that the separation distance is achieved at time moment

t = Tlim between nth and n − 1th front and the rest of the fronts remain well-separated (the non-generic

case when more than two kinks achieve the collision distance simultaneously is treated analogously):

|Dn(Tlim)−Dn−1(Tlim)| ≈ dlim, |Di+1(Tlim)−Di(Tlim)| � dlim, i = 1, · · · , n− 1.

Then, we replace the “old” n-component multi-kink structure

uold = u(Tlim, x) =

n∑
i=1

V ((−1)i(x−Dold
i )) + h(n) + wold := V oldΣ + wold,

by the “new” (n− 2)-component structure

unew =
n−2∑
i=1

V ((−1)i(x−Dnew
i )) + h(n− 2) + wnew := V newΣ + wnew,

where the new kink locations Dnew
i and the new remainder function wnew is found from the natural com-

patibility conditions

uold = unew, 〈wnew, ψ(x−Dnew
j )〉 = 0, j = 1, · · · , n− 2.
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These are natural conditions to compose since they guarantee that the new update system maintains the

orthogonality conditions as stated in (2.5). Therefore one can then define wnew = V oldΣ − V newΣ + wold and

re-write these equations in the form〈 n−2∑
i=1

V ((−1)i(x−Dold
i )) − V ((−1)i(x−Dnew

i )), ψ(x−Dnew
j )

〉
+

+

〈
wold, ψ(x−Dnew

j )− ψ(x−Dold
j )

〉
= −

〈 n∑
i=n−1

V ((−1)i(x−Dold
i )), ψ(x−Dnew

j )

〉
, j = 1, · · · , n− 2.

Here we have implicitly used that h(n) = h(n− 2) and the orthogonality conditions for wold. We solve this

system of (n− 2) equations for the unknowns Dnew
i via the Newton’s method using the “old” kink positions

Dold
i as the initial approximation. Indeed, the RHS of this equation is a small perturbation since the term∑n
i=n−1 V ((−1)i(x −Dold

i ) is localized near the collision point which is assumed to be well-separated from

the positions of other kinks and the Jacobi matrix of this system in a small neighborhood of the initial

approximation Dold
i is close to identity (analogously to (2.5) and (2.6)). Thus, the new kink positions Dnew

i

are uniquely defined and will be close to the old ones Dold
i , i = 1, · · · , n− 2. When the new kink positions

Dnew
i are derived, the new remainder function wnew is computed via

wnew = uold −
n−2∑
i=1

V ((−1)i(x−Dnew
i )− h(n− 2).

We then evolve the updated projected system (2.14)-(2.15) for the remaining (n− 2)-kinks with new values

Dnew
i and wnew starting from t = Tlim.

By doing this update to our system, we are able to capture the strong interaction between the colliding

fronts while efficiently computing the weak interactions of the remaining well-separated fronts. In the case

where we have two fronts left we cannot approximate the collision using PS so we switch to SS. The case of

triple or more collisions can be treated analogously.

In order to evolve (2.14)-(2.15), we employ a fourth-order central differences discretisation in space and

compute the inner products via Simpson’s rule. This yields a large ODE system to evolve and we use the

same time stepper as the one used for SS.

As we can see, the above described projection scheme uses in a crucial way the shape of the initial kink (V )

as well as its the kernel (ϕ) and co-kernel (ψ) elements. These functions are known analytically only in some

exceptional model cases and usually can be found only numerically. Translates of these functions are needed

continuously for the PS scheme and hence one needs to compute these functions in an efficient manner. In

order to compute these functions we need to solve to high precision the nonlinear ODE (1.3) (determining V

and c) as well as the subsequent linear ODE (1.4) (determining ψ). The kernel element ϕ can be the found

by the numeric differentiation of V .

To this end, we re-write (1.3) and (1.4) as a first order ODE system given by

uξ = v, (2.17a)

vξ =− f(u)− cv, (2.17b)

ψξ =ρ, (2.17c)

ρξ =− f ′(u)ψ + cρ+ λψ, (2.17d)

where λ is an Eigenvalue to be solved for and the last two equations solve the adjoint Eigenvalue problem

on ξ ∈ [−L/2, L/2], with projection boundary conditions at ξ = −L/2 and ξ = L/2 and phase conditions∫ L/2

−L/2
vold(u− uold)dξ =0, (2.18a)∫ L/2

−L/2
vψdξ =1, (2.18b)
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where uold is a previously computed front and the last phase condition implements (2.8); see [7]. The

first phase condition (2.18)(a) is required so that the computed front solution is unique and centred at the

origin (otherwise the front could be arbitrarily translated creating difficultly for any Newton solver since the

Jacobian would be singular) while the second phase condition (2.18)(b) is required to fix the arbitrary scaling

of the adjoint eigenfunction cf. (1.4). Since we have six equations (2.17)-(2.18), we need six unknowns to

solve for. So while we wish to find the λ = 0 adjoint Eigenfunction, we add λ as an unknown to be solved for

and the term λψ to the last equation of (2.17) to regularise the system; see [7] for details. Since the λ = 0

adjoint Eigenfunction is isolated and localised, we expect that the solution of (2.17)-(2.18) for (u, v, ψ, ρ, c, λ)

is unique and well-posed.

We solve the system (2.17)-(2.18) using an orthogonal collocation scheme to discretise (2.17) as described

in [4]. The kernel element is v and the co-kernel element is ψ. We initialise the boundary-value problem

starting from the case where f(u, x) = u − u3 where there is an explicit solution of the form (u, ψ) =

(tanh(x/
√

2), 3sech2(x/
√

2)/4) and use pseudo-arclength continuation to smoothly change ε from zero to yield

solutions for the RGL2 and RGL3; see [4] for details on the pseudo-arclength continuation and orthogonal

collocation algorithms. The projection boundary conditions yield an error estimate for the domain truncation

error of O(e−2L) and are the best possible linear boundary conditions; see [19]. For any simulation of

stationary multi-fronts, the computation of a single front need only be done once before the simulation. In

the case where we have travelling fronts with different velocities then we should calculate each front and its

eigenfunctions separately. For the projection scheme we need to compute the translations of the single front

and its eigenfunctions since all the functions are initially computed at the centre of the domain. Therefore,

we carry out a piecewise cubic spline interpolation in matlab whose error determined by the error of the

discretisation of the boundary value problem (2.17). By using this method we can efficiently compute, at

each time step, all the required functions at the locations di, of each i-th front.

3 Results

3.1 Implementation

In order to solve (2.17) and compute a single front, we use the software package auto07p [4] with the relative

error of the solution set to 5 × 10−12 and NTST=5000, L = 100. For the cubic spline interpolation of the

single front to translated fronts, we use the matlab routine interp1. We choose a spatial discretisation of

(2.14)-(2.15) to be ∆x = 1×10−4 such that the absolute error of the inner products and spatial differentiation

is O(10−16). To time step SS and PS, we use matlab’s ode15s routine that implements the variable order

ODE solver with adaptive time stepping while controlling the relative error to 1× 10−14. In order to speed

up the time stepping, we provide analytically the Jacobian of the rhs of the ODEs. The routine ode15s [23]

allows for event detection that allows us to detect when two fronts become close together which we make

use of in PS.

In order to carry out the detection of the location of the fronts in the SS scheme, we use matlab’s fsolve

routine to solve the nonlinear system (2.5).

All of the results presented in this section have been computed on a machine with the following specifications:

Intel(R) Core(TM) Duo CPU E8400 @3.00GHz, 8GB RAM, using Ubuntu 10.04.

3.2 Multi-front solutions of the RGL1 equation

In order to carry out a comparison of the two schemes and investigate their accuracy we start by considering

the interaction of two fronts in the RGL1 equation. We first analytically derive the projection scheme and

carry out a detailed analysis. We will then use the analysis to compare against the two numerical schemes.

To this end, by setting number of fronts n = 2 we can derive from the generalised equations (2.13) and (2.15)
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the corresponding projected system for two kinks given by

d′1 =
〈R(V )− d′2ϕ2, ψ1〉
〈w,ψ′1〉 − 1

−Ω(w2, w3, V1, V2), (3.1a)

d′2 =
−〈R(V )− d′1ϕ1, ψ2〉
〈w,ψ′2〉 − 1

+Ω(w2, w3, V1, V2), (3.1b)

∂w

∂t
=Lw +

(
〈R(V )− d′2ϕ2, ψ1〉
〈w,ψ′1〉 − 1

−Ω(w2, w3, V1, V2)

)
ϕ1 (3.1c)

+

(
〈R(V )− d′1ϕ1, ψ2〉
〈w,ψ′2〉 − 1

+Ω(w2, w3, V1, V2)

)
ϕ2

+3
(V1 − V2)e

d1−d2√
2

cosh
(
x−d1√

2

)
cosh

(
x−d2√

2

) − 3V1w
2 + 3V2w

2 + 3w2 − w3,

where

Vi = tanh

(
x− di√

2

)
, L = ∂xx + I + f ′(V1 + V2), Ω(w2, w3, V1, V2) =

〈3V1w
2 − 3V2w

2 − 3w2 + w3, ψi〉
〈w,ψ′i〉 − 1

,

R(V ) =
3e

d1−d2√
2 (V1 − V2)

cosh
(
x−d1√

2

)
cosh

(
x−d2√

2

) ,
and ψi = 3sech2((x− di/

√
2)/4.

A leading order approximation for how the two fronts interact can be found by assuming that the remainder

function w is zero i.e., the solution is just the two fronts. Setting w = 0, the equations for the translations

of the two fronts simplify to

d′1 =
〈R(V ), ψ1〉 − 〈ϕ2, ψ1〉〈R(V ), ψ2〉

1 + 〈ϕ1, ψ2〉〈ϕ2, ψ1〉
, (3.2a)

d′2 =
−〈R(V ), ψ2〉+ 〈ϕ1, ψ2〉〈R(V ), ψ1〉

1 + 〈ϕ1, ψ2〉〈ϕ2, ψ1〉
, (3.2b)

where

〈R(V ), ψi〉 = (−1)i+1
6
√

2
(
e3d(t)

√
2 + (9− 6b

√
2)e2d(t)

√
2 − (9 + 6b

√
2)ed(t)

√
2 − 1

)
−e4d(t)

√
2 + 4e3d(t)

√
2 − 6e2d(t)

√
2 + 4ed(t)

√
2 − 1

,

〈ϕ1, ψ2〉 = 〈ϕ2, ψ1〉 = −
6
√

2ed(t)
√

2
(
ed(t)

√
2(2− d(t)

√
2)− d(t)

√
2
)

3ed(t)
√

2 − 3e2d(t)
√

2 + e3d(t)
√

2 − 1
.

Taking the leading order terms on the right hand side of (3.2) one can find the approximation for d(t) =

|d1(t)− d2(t)| given by

d(t) ≈ − 1√
2

log
(

6t+ e
√

2d(0)
)
, (3.3)

where d(0) is the initial separation of the fronts. The error of this approximation decays exponentially as

the separation distance d(t) increases. Crucially, this estimate tells us that two kinks are attracted to each

other and should eventually come together for some finite T . Furthermore, in cases of multiple kinks, if a

pair of fronts is well separated from the other kinks, then we still have similar behaviour due to the fact that

these weak interactions do not affect leading order terms.

In Figure 2 (a), we show how the distance between the two kinks evolves leading to a collision and annihilation.

The PS scheme (3.1) is evolved till the kinks have a separation distance of 2 and then we switch to SS scheme

in order to compute the strong interaction and collision. We also plot the analytical approximation (3.3)

alongside for comparison. We see that initially the two fronts slowly become attracted to each other and as

they become closer together the two fronts move quicker. Eventually, the two fronts collide at t ≈ 415 and

annihilate each other. We note that when two fronts collide, we always have an exponentially decaying trace

that takes infinite time for it to dissipate. Therefore, we define collision time as the the time point where
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Figure 2: (a) Comparison of analytic estimate (3.3) with numerical results of the distance between two well separated

kinks with d(0) = 7. The numerical results are split into two segments, the projected system (PS) and the standard

time stepping scheme (SS) data. (b) The condition number of the matrix G(d,w) i.e., ‖G(d,w)−1‖2‖G(d,w)‖2, as

the distance between the two kinks decreases. We see that for d(t) < 1, the condition number of G rapidly increases.

the decaying trace has machine accuracy order, i.e O(10−16). In Figure 2 (b) we plot the condition number

of the matrix G(d,w), ‖G(d,w)−1‖2‖G(d,w)‖2 where ‖ · ‖2 is the matrix 2-norm, as the distance between

the two kinks decreases. We see that as the separation distance decreases below 1, the condition number

rapidly increases suggesting that the PS scheme breaks-down in this region. Hence, stopping the PS scheme

at a distance d(tlim) = 2 yields a sensible criteria for transitioning to the SS scheme and propagating the

fronts till collision and annihilation.
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Figure 3: (a) Comparison of the two schemes with different solvers for d(0) = 10 with ∆x = 0.005 (b) Convergence

of SS scheme and comparison of schemes regarding space step ∆x for initial conditions d(0) = 7.

In order to test the accuracy of the schemes, we solve (3.2) using matlab’s high accuracy solver ode113 and

define the error to be the absolute value of the difference between d(t) and the SS/PS scheme (where one

carries out numerical integration for the inner products) and the ode15s scheme. In Figure 3 (a), we show

how the error evolves over time starting for d(0) = 10 with ∆x = 0.005, Lx = 50. We see that although the

error increases over time for both numerical schemes, SS appears to have a significantly larger error whereas

the PS scheme remains more accurate over time. We note that the solver ode113 is feasible only for special

cases where the system does not involve a stiff PDE. We see that the the PS scheme remains accurate even

for very large spatial steps where as for similar spatial step sizes the SS scheme performs very poorly; see

Figure 3 (b). This highlights the robustness of the PS scheme compared to the SS scheme and also that for

long simulations one might expect the SS scheme to be slower than the PS scheme.
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d(0) Scheme ∆x ∆t Error Comp. Time

7 SS 0.01 < 0.1 8.41e-4 3.54

7 PS 0.5 Adapt. 9.17e-5 3.21

10 SS 0.01 < 0.1 5.33e-8 3.53

10 PS 0.01 Adapt. 3.56e-9 2.79

15 SS 0.01 < 0.1 8.7e-8 3.57

15 SS 0.01 < 0.01 8.68e-8 50.53

15 PS 0.01 Adapt. 1.53-11 1.93

Table 1: Computational time and error comparison of the SS and PS schemes both evaluated at t = 200 for three

different initial conditions where d(0) = 7, d(0) = 10 and d(0) = 15.

In Table 1, we show the computational wall time taken and the error at t = 200 with respect to evolving

(3.2) with matlab’s ode15s solver. We find for the SS scheme, one needs to stipulate a maximum time

step in order to avoid large errors. Since the SS and PS schemes compute different things we show the

computational time taken to compute the full solution u(x, t) of the PDE. We find that for these short

simulations, the PS scheme outperforms SS scheme in all cases by providing a more accurate estimate and

taking less computational time. In fact the computational times are only close in the case where we have the

strongest interaction between the two fronts. Considering weak interacting fronts (e.g. d(0) = 10, d(0) = 15),

the PS scheme excels by making full use of the adaptive time stepping. For very long simulations requiring

very tight error tolerances we expect the PS scheme to out perform the SS scheme significantly due to the

later requiring to solve a larger set of ODEs and the small time step.

We find that the adaptive time stepper, ode15s, for the PS scheme can take large time steps due to the fact

that remainder function w(x, t) remains small and evolves slowly for weak interacting fronts. The evolution

of w(x, t) is slaved to the location variables di(t) which evolve slowly for well separated fronts. However, in

cases where fronts become strong interacting remainder function w(x, t) grows in time since location variables

di(t) evolve much faster and the time-stepper has to take smaller time steps.

We will now investigate various multi-front solutions of the RGL using the PS scheme. In almost all cases

we observe that fronts annihilate each other in pairs. However, it is possible to create a degenerate case

where three fronts collide at the same point with one left after the collision provided the fronts are initial

equi-spaced. Setting the initial front locations to be d1(0) = a, d2(0) = 0 and d3(0) = −a for some positive

constant a, we find that the projected system (2.13) and (2.15) with the number of fronts set to three i.e.,

n = 3, possesses the symmetry d1(t)→ −d3(t) and that d′2(t) = 0 for all time. Setting w = 0, the equations

(2.13) and (2.15) for n = 3 to leading order are given by

d′1 = −12
√

2e−|d1|
√

2 +O(e−2|d1|
√

2). (3.4)

Equation (3.4) is identical to the 2-front case since the the third front has distance 2d1 (from the first

front) and produces only second order corrections to the leading interactions term. The approximation (3.4)

provides a good estimate as to how the location of front evolves over time for weak interactions and we see

that since the righthand-side of (3.4) is negative to leading order, the variable d1(t), decreases. Hence, we

expect all three fronts to collide at the same point.

In Figure 4 (a), we show the evolution of three fronts equally spaced. For such solutions, one expects the

simulations to remain symmetric with the middle front remaining unaffected by the two fronts attracting to

it until all three fronts collide together. One has to be careful with setting the point to stop the PS scheme

when the fronts become close together as numerical roundoff errors become amplified as the scheme becomes

ill-posed. In Figure 4 (b) we plot the condition number of G(d,w) as the distance between the three kinks

goes to zero; here d(t) = |d3(t) − d2(t)| = |d2(t) − d1(t)|. We see that for separation distances below 2 the

condition number rapidly increases and in fact the matrix G becomes singular at d(t) ≈ 1.2. Hence, we find

that stopping the PS scheme when the distance between the three fronts is 2 works well in this case.
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Figure 4: (a) Evolution of three equidistant kink solution with initial conditions d1(0) = 15, d2(0) = 20, d3(0) = 25

and spatial step ∆x = 0.001. At t ≈ 52 all three kinks collide and one kink survives at the end. (b) The condition

number of G(d,w) i.e, ‖G(d,w)−1‖2‖G(d,w)‖2, verses the separation distance d(t) = |d3(t)− d2(t)| = |d2(t)− d1(t)|.

Next, we consider six equi-spaced fronts with initial locations d1(0) = 15, d2(0) = 20, d3(0) = 25, d4(0) =

30, d5(0) = 35, d6(0) = 40. In Figure 5 (a) we observe how the six fronts evolve together by using the

PS scheme. We see that the four outer fronts have two collisions at t ≈ 33 before the two remaining fronts

annihilate each other at t ≈ 55. Near the first set of collisions (when the separation distance between the two

fronts is two), we see in Figure 5 (b) how the PS process strong interacting fronts using remainder function

w(x, t) which is vital for computing strong interactions. When the separation distance of the kinks reaches

2, the PS scheme is stopped and the corresponding equations of strongly interacting fronts (d1, d2, d5 and

d6) are removed with new initial conditions for d3, d4 and w computed. The new initial conditions have a

jump that is small in d3 and d4 but large in w since it now includes the colliding front pairs (centred at

x = 37.5 and x = 17.5); see Figure 5 (b) showing the jump in the w-function around the first collision at

t ≈ 33. From there we track the colliding fronts from the remainder function w plotted in Figure 5 (a) as a

dashed red line denoted as WPDE. We now simulate the reduced PS system until the next collision. With

this approach we are able to accurately capture the weak interactions of the multi-fronts and the colliding

fronts.

In Figure 6 (a) we show the simulation of five equi-spaced fronts where we observe the middle front survives

after the other two pairs collide and annihilate. Figure 6 (b) presents the evolution of nine fronts with not

equi-spaced. In this case we find the front closest to each other attract and annihilate each other due to

them having the largest interaction forces.

3.3 Multi-front solutions of RGL2 equation

We will now look at how the projection scheme can apply to the case where a single front is travelling in the

RGL2 equation. The RGL2 equation possesses explicit travelling front solutions of the form

V (x− ct− d(t)) = tanh

(
x− ct− d(t)√

2

)
,

where c = ±ε
√

2. Depending on the initial direction of the travelling fronts, we observe either collision of

repulsion. In Figure 7 (a) we present the simulation of two travelling fronts of the RGL2 equation with the

fronts initially located at d1(0) = 15, d2(0) = 25 and ε = 0.5. Choosing travelling fronts that move towards

each other, we expect a collision at t = 10
√

2 and we observe a collision at approximately this value since

the interaction terms are significantly weaker than the travelling speed of the fronts.

The effect of the perturbation term, ε(u2 − 1), on the front interaction can be approximated when ε � 1.
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Figure 5: (a) Evolution of translation variables for 6 equidistant kinks with initial conditions d1(0) = 15, d2(0) =

20, d3(0) = 25, d4(0) = 30, d5(0) = 35, d6(0) = 40. We see that the two outer pairs (including first, second,

fifth and sixth fronts) collide at the same time (t ≈ 33). The middle two kinks survive and collide at a later time.

Near where the first collisions occur at t ≈ 33, the PS stops and updates the system by removing the corresponding

ODEs for the colliding fronts (d′1, d
′
2, d
′
5 and d′6) and by using new initial conditions for d3, d4 and w, we continue the

numerics using a new well-posed system. We then track the colliding fronts from w using (2.5), plotted in dash red

denoted at WPDE. For the final collision, we switch from the PS scheme to the SS scheme and track the fronts in

the same manner, shown as dashed black. Panel (b) shows the jump observed as a result of the new initial conditions

for remainder function w(x, t) near the first collision at t ≈ 33 where we stop PS. We see that before the collision w

is approximately zero until the distance between the fronts reaches 2. When the separation distance between the first

& second, and fifth & sixth fronts reaches 2, PS scheme is stopped and and new PS system is computed with new

initial conditions. At this point we see a sudden jump in the w-function centred at the locations of the colliding kinks.

Re-starting the new PS system, we see that w quickly decays to zero.

Setting w = 0, we find the leading order system to be,

d′1 − 〈d′2ϕ2, ψ1〉 = +I1 + εP1, (3.5)

d′2 − 〈d′1ϕ1, ψ2〉 = −I2 + εP2, (3.6)

where f(u) = u− u3, Ii = 〈f(V1− V2− 1)− f(V1) + f(V2), ψi〉 are the terms due to the front interacting via

their tails and Pi = 〈(V1−V2−1)2−1, ψi〉 are the terms due the perturbation term ε(u2−1). Setting ε = 0,

we find that the fronts interact exactly as before for the RGL1. Since Ii = O(e−
√

2|d1−d2|) and Pi = O(1),

then the size of ε will determine whether the dynamics are mostly governed by the front interaction terms

or the perturbation terms. In particular, if |ε| < O(e−
√

2|d1−d2|), then the fronts will behave qualitatively

similar to when ε = 0 i.e., the fronts will collide and annihilate each other with only difference being that

collision point of the fronts may be slightly shifted. When |ε| > O(e−
√

2|d1−d2|), the perturbation terms Pi

dominate and depending on the sign of ε one can observe fronts moving away from each other ε < 0 or

colliding ε > 0.

For |ε| > 1, one of two u = ±1 (depending on ε sign) equilibriums becomes unstable and analysis on the

dynamics becomes challenging. In Figure 7 (b), we show what happens to six fronts for ε = 5 with initial

locations of d1(0) = 10, d2(0) = 50, d3(0) = 70, d4(0) = 90, d5(0) = 110, d6(0) = 140 and wave speeds

±5
√

2. In this case, we observe that the fronts behave in a very similar fashion as for ε < 1.

3.4 Multi-fronts solutions of the RGL3 equation

We will now look at the case where we have spatial inhomogeneities in the PDE e.g. the RGL3 equation.

For the RGL3 equation we expect to see bound states occurring due to the small periodic in-homogeneity if

ε and the initial separation distances of the fronts are chosen correctly. Setting w = 0, we find the leading
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Figure 6: Evolution of multi-kinks (a) We consider 5 kink equidistant solution with initial conditions d1(0) =

15, d2(0) = 20, d3(0) = 25, d4(0) = 30, d5(0) = 35, and ∆x = 0.001. The collision of the two pairs

leaves only one kink surviving at the end. (b) We consider 9 kink equidistant solution with initial conditions

d1(0) = 15, d2(0) = 20, d3(0) = 24, d4(0) = 30, d5(0) = 35, d6(0) = 40, d7(0) = 47, d8(0) = 52, d9(0) = 59, and

∆x = 0.001. Kinks detect which kink is closer to them and move towards it.
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Figure 7: (a) Two traveling fronts, with initial conditions d1(0) = 15, d2(0) = 25, ε = 0.5 and ∆x = 0.001. Since

we are considering a kink-antikink solution kinks move towards each other and collide with velocity |c| ≈ 0.5
√

2 (b)

Six high velocity travelling fronts with initial conditions d1(0) = 10, d2(0) = 50, d3(0) = 70, d4(0) = 90, d5(0) =

110, d6(0) = 140, ε = 5 and ∆x = 0.001 .

order ODE system describing location of the two fronts for perturbation function r(x) = ε cos(x− α) to be

d′1 − 〈d′2ϕ2, ψ1〉 = +I1 + εP1, (3.7)

d′2 − 〈d′1ϕ1, ψ2〉 = −I2 − εP2 (3.8)

where

Ii = 〈f(V1 − V2 − 1)− f(V1) + f(V2), ψi〉, and, Pi = 〈cos(x− α), ψi〉,

f(u) = u − u3 and α is a real constant. Here the terms Ii are due to the fronts interacting via their

tails and the Pi terms are due to the fronts interacting with the spatial inhomogeneity. As in the RGL2

case, depending on the sign and size of ε one will observe different dynamics since Ii = O(e−
√

2|d1−d2|) and

Pi = O(1). When ε < O(e−
√

2|d1−d2|), perturbation terms Pi are not large enough to impact the dynamics

of the two fronts and they will collide and annihilate each other similar to the dynamics of RGL1 equation.

The small terms introduced will shift slightly the collision point for the fronts but annihilation is inevitable

once again. If ε > O(e−
√

2|d1−d2|), then the perturbation terms dominate the dynamics and one will observe

the fronts converging to bound states.
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In Figure 8 (b) we show the evolution of two fronts located at d1(0) = 25 and d2(0) = 30. We have

chosen ε = 0.05 and r(x) = cos((x − 25)/2) in order for the perturbation term εr(x) to have slightly

higher order than interaction terms |d′1(0) − d′2(0)| ≈ 0.02. More specifically, in Figure 8 (a) we can see

how the inhomogeneity r(x) acts differently on the two fronts such that for the front centred at x = 25,

r(25) ≈ 1 and for front located at x = 30 where r(30) ≈ −1, preventing the two fronts from colliding

and annihilating one another. Moreover in Figure 8 (b) one can see that the fronts initially translate

but very quickly converge to a single pulse at t ≈ 100. Depending on the location of the fronts we can

observe a variety of behaviors such as annihilation; see Figure 9 where we simulate six fronts located at

d1(0) = 25, d2(0) = 30, d3(0) = 36, d4(0) = 40, d5(0) = 45, d6(0) = 50. We can see in Figure 9 the

two outer pairs with separation distance equal 5 converge to bound states whereas the middle pair of fronts

(d3, d4) with separation distance 4 collide and annihilate. The behavior seen in 9 occurs due to strong

interaction of the fronts producing higher order terms that cannot be canceled by the perturbation function.

0 10 20 30 40 50

0

x

u(x)	



 

- 1.0

1.0  

0 5000

50

x

t

(b)(a)

Figure 8: (a) A plot of the perturbation r(x) = 0.05 cos
(
x−25

2

)
and the final bound state with ∆x = 0.001. (b)

Evolution of two kinks over time; after some initial transient the kinks converge to bound states.
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Figure 9: Evolution of six kinks over time with initial conditions r(x) = cos
(
x−25

2

)
, d1(0) = 25, d2(0) = 30, d3(0) =

36, d4(0) = 40, d5(0) = 45, d6(0) = 50, ε = 0.05 and ∆x = 0.001. We can see two pairs of kinks converging, however

the pair that has interaction terms d′(0) = d′4(0)− d′3(0) > O (εr(x)) stays unaffected by the perturbation and the two

kinks collide.
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4 Conclusion

In this paper, we have presented a novel numerical method for simulating multi-fronts in RGL equations

based on the global centre-manifold reduction for multi-localised structures. The addition of a remainder

function in the ansatz allows us to accurately compute through collisions of fronts via a careful detection of

the separation distances of the fronts, halting the computation and initialising a new PS system with specially

chosen initial conditions. This scheme is found to be significantly more robust and efficient than evolving a

standard finite-difference discretisation of the RGL equation. In particular, for coarse meshes the PS scheme

significantly out performs SS scheme by explicitly capturing the interaction terms. The main reason for the

robustness of the scheme is that a single front and its neutral Eigenfunction is accurately computed once

and the accuracy of the time-stepping is governed by the accuracy of this single front computation. Since

the expensive computation of a single front is done only once and the computation of the interaction terms

being fast (due to the inner products having significantly better error terms than derivative terms), the

time-stepping scheme becomes a very efficient method for evolving multi-fronts.

We have tested the PS scheme on three different RGL type equations in order to explore a variety of different

multi-front states. We started by presenting simulations of two-, three- and many multi-fronts interact with

each other in the RGL1 equation. We found in all cases for the RGL1 equation, fronts attract one another

resulting in collisions and annihilations of the fronts. In particular, we showed that the PS scheme is

sufficiently robust to capture the collision of three equi-spaced fronts that collide together simultaneously.

The PS scheme can be easily extended to cope with the case where an individual front is travelling and

inhomogeneous terms are added to the RGL equation.

Let us now discuss the generality and extensions of the PS scheme. The centre-manifold theory of Zelik &

Mielke [27] has been proved for a general parabolic PDE system with a strongly elliptic differential operator

involving general weakly interacting localised structures in several space dimensions. Hence, the numerical

PS scheme presented in this paper extends to a large class of problems. In particular, one can study the

interacting of localised pulses on the plane that are elliptical, or hexagon patches. An open problem is the

development of a centre-manifold theory for weakly interacting localised structures with internal dynamics

such as oscillons. Another interesting direction for research is to investigate the interaction of multi-localised

structures in Hamiltonian systems where the linearisation of a single localised structure is not normally-

hyperbolic.

One of the main advantages of our scheme is the explicit computation of the small interaction terms where

we are able to keep control on all the numerical error tolerances. However, we are still limited by machine

precision arithmetic in particular the numerical scheme we have implemented is limited to double precision

arithmetic i.e., separation distances of order less than log(α[1 × 10−16]) where α is the linear decay rate

to the base state. Another problem with evolving fronts with large separation is that they will move on

exponentially large time-scales requiring very fast time-steppers. The problem with machine precision can

be easily overcome by using extended or arbitrary precision arithmetic. However, then the development of

fast time-steppers becomes extremely important due to the computational cost of computing with such high

precision. In order to overcome the exponentially slow time evolution, we suggest that a rescaling in time

with the leading order interaction terms e.g. t = e−αd(τ)τ where d is the separation distance between two

localised structures. This rescaling will lead to a system with order one terms for the ODEs describing the

location of the localised structures with a PDE system describing the slow evolution of the perturbation

function w. One then needs to develop fast and efficient time-steppers to take advantage of this new fast-

slow ODE/PDE system and we leave this for further work. The major advantage of this approach will be

that the expensive computation of the single localised state and its neutral eigenfunction has to only be

done once and the inner product terms having better error terms than numerical differentiation. Another

advantage is that one should be able to break the computation of interacting localised states into three

different schemes based on large, middle and short separation distances. For large separation of fronts, one

can use the rescaling of time and treat w as slaved to the location of the fronts. For the middle and short
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separations, one can use the numerical scheme described in this paper. Hence, one should be able to deal

effectively with multi-fronts/pulses from extremely well-separated to colliding.

Another interesting extension is the computation of pulses/fronts after collision that do not lead to annihila-

tion. We anticipate that any collision of localised states should at most generate finitely many new localised

states and our numerical scheme should be able to capture the nucleation of these new states. One then

needs a good detection mechanism to halt the simulation when the localised states become sufficiently well

separated in order to re-compute the projected system and efficiently capture the weak interaction terms.

We leave the investigation of this process and development of the numerical algorithm for further work.

In conclusion, we have presented a numerical approach for evolving multi-pulses/fronts that has the potential

to simulate extremely well separated fronts or pulses to collision and beyond efficiently and accurately.
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