Skip to main content
Log in

Gradient Recovery for the Crouzeix–Raviart Element

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A gradient recovery method for the Crouzeix–Raviart element is proposed and analyzed. The proposed method is based on local discrete least square fittings. It is proven to preserve quadratic polynomials and be a bounded linear operator. Numerical examples indicate that it can produce a superconvergent gradient approximation for both elliptic equations and Stokes equations. In addition, it provides an asymptotically exact posteriori error estimators for the Crouzeix–Raviart element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42, 2320–2341 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley-Interscience, New York (2000)

    Book  Google Scholar 

  3. Babuška, I., Strouboulis, T.: The Finite Element Method and its Reliability. Oxford University Press, London (2001)

    Google Scholar 

  4. Bank, R., Xu, J.: Asymptotically exact a posteriori error estimators. I. Grids with superconvergence. SIAM J. Numer. Anal. 41, 62294–2312 (2003)

    Google Scholar 

  5. Braess, D.: Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  6. Bramble, J.H., Schatz, A.H.: Higher order local accuracy by averaging in the finite element method. Math. Comp. 31, 94–111 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn, Texts in Applied Mathematics, 15. Springer, New York (2008)

    Book  Google Scholar 

  8. Brenner, S.C., Sung, L.-Y.: Linear finite element methods for planar linear elasticity. Math. Comput. 59, 321–338 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Franco, F.Brezzi, Michel, M.Fortin: Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15. Springer, New York (1991)

    Google Scholar 

  10. Cai, Z., Zhang, S.: Recovery-based error estimators for interface problems: mixed and nonconforming finite elements. SIAM J. Numer. Anal. 48, 30–52 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carstensen, C., Bartels, S.: Each averaging techique yields reliable a posteriori error control in FEM on unstructure grids. I: Low order conforming, nonconforming and mixed FEM. Math. Comput. 71, 945–969 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  13. Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. RAIRO Anal. Numer. 3, 33–75 (1973)

    MathSciNet  Google Scholar 

  14. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ern, A., Vohralik, M.: Four closely related equilibrated flux reconstructions for nonconforming finite elements. C. R. Math. Acad. Sci. Paris 351, 77–80 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Falk, R.S.: Nonconforming finite element methods for the equations of linear elasticity. Math. Comput. 57, 529–550 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Heimsund, B., Tai, X., Wang, J.: Superconvergence for the gradient of finite element approximations by L2 projections. SIAM J. Numer. Anal. 40, 1263–1280 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Huang, Y., Yi, N.: The superconvergent cluster recovery method. J. Sci. Comput. 44, 301–322 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, M., Mao, S., Zhang, Z.: Superconvergence analysis of nonconforming Crouzeix-Raviart Finite Eelement Method (preprint)

  20. Kr̆\(\acute{\text{ i }}\)z̆ek, M., Neittaanmäki, P.: Superconvergence phenomenon in the finite element method arising from averaging gradients. Numer. Math. 45, 105–116 (1984)

  21. Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Elements. Hebei University Press, Henan (1996)

    Google Scholar 

  22. Niceno, B.: EasyMesh Version 1.4: A Two-Dimensional Quality Mesh Generator. http://www-dinma.univ.trieste.it/nirftc/research/easymesh

  23. Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73, 1139–1152 (2004)

    Article  MATH  Google Scholar 

  24. Naga, A., Zhang, Z.: A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 42, 1780–1800 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique. Int. J. Numer. Methods Eng. 33, 1331–1364 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Guo.

Additional information

This work is supported in part by the US National Science Foundation through Grants DMS-1115530 and DMS-1419040 and National Natural Science Foundation of China under Grants 91430216 and 11471031.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Zhang, Z. Gradient Recovery for the Crouzeix–Raviart Element. J Sci Comput 64, 456–476 (2015). https://doi.org/10.1007/s10915-014-9939-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9939-5

Keywords

Mathematics Subject Classification

Navigation