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Abstract In this paper we present an error estimator for unilateral contact problems solved
by a Neumann–Neumann Domain Decomposition algorithm. This error estimator takes into
account both the spatial error due to the finite element discretization and the algebraic error
due to the domain decomposition algorithm. To differentiate specifically the contribution of
these two error sources to the global error, two quantities are introduced: a discretization
error indicator and an algebraic error indicator. The effectivity indices and the convergence
of both the global error estimator and the error indicators are shown on several examples.

Keywords Error estimation · Domain decomposition algorithm · Contact problem ·
Discretization error · Algebraic error

1 Introduction

In mechanical engineering, especially in structural analysis, multi-body contact problems
are frequent. Contact is characterized by unilateral inequalities, describing the impossibility
of tensile contact tractions, of material interpenetration and by an a priori unknown contact
area. Combined with a finite element method (FEM), several approaches exist for solv-
ing the nonlinear equations issued from the discretization of frictionless contact problems
[1–3]. An important point is to evaluate the approximation errors introduced by the numerical
algorithm. For contact problems two distinct sources of errors are introduced: the first one
due to the spatial discretization (the finite element mesh), the second one due to the algo-
rithm used to solve the nonlinear equations. Several methods have been developed over many
years to evaluate the global quality of FE analysis. For linear problems the earlier works have
lead to estimators based on the residual of the equilibrium equation [4], estimators based
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on the concept of constitutive relation [5], and estimators using the smoothing of the finite
element stresses [6]. For multi-body contact problems there is much less work [7–14]. A
global error estimator in constitutive relation, which is an upper bound of the exact error, has
been developed in [8] for unilateral contact problems without friction. This error estimate
has been extended to friction problems in [10], to dynamic problems in [11] and to a natural
Dirichlet–Neumann domain decomposition algorithm in [14] . An error estimate for linear
elastic problems solved by FETI method [15] or BDD method [16] was proposed in [17].

In this paper, we consider a natural Neumann–NeumannDomainDecomposition (NNDD)
algorithm, for two elastic bodies in contact, in which each iterative step consists of a Dirichlet
problem for one body, a contact problem for the other one and two Neumann problems to
coordinate contact stresses [19]. For the sake of simplicity, we shall here only consider two
bodies contact problems where some Dirichlet conditions are imposed on each body.

The main objective of this paper is to present an a posteriori global error estimator for a
frictionless contact problem, solved by a NNDD algorithm and two error indicators which
allow to estimate the part of the error due to the spatial discretization and the part of the error
due to the domain decomposition algorithm.

The paper is organized as follows: In Sect. 2, we introduce the frictionless contact problem
to be solved. The domain decomposition algorithm is described in Sect. 3. In Sect. 4, the finite
element variational formulations are introduced. Section 5 is devoted to the formulation of
the global error estimator, the discretization error indicator and the algorithm error indicator.
Finally, in Sect. 6, the different errors are analyzed through numerical examples.

2 Contact Problem

Let two elastic bodies, represented by Ω1 and Ω2, be in unilateral contact along an interface
Γ c. Some displacements uα

D are imposed on the boundaries Γ α
D whereas some surface forces

Fα are applied on Γ α
N . For the sake of simplicity, body forces are not considered. We choose

the orientation of the contact zone Γ c by setting: nc = n1, see Fig. 1.
We introduce, on the interfaceΓ c, the functionsw1 andw2 representing two displacement

fields defined on each side of the interface and wc an interior displacement field. We also
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define t1 and t2, representing two fields of surface density forces (stresses transmitted to Ω1

and Ω2) and tc an interior field of surface density forces.
Let Vα denote the Sobolev spaces H1(Ωα) and let us define the sets of admissible dis-

placement fields defined on Ωα , the trace of which, on the interface Γ c, is equal to a given
displacement uα

D :

Vα(uα
D) = {

v ∈ H1(Ωα); u = uα
D onΓ α

D

}
.

The associated vector spaces are then defined as

Vα(0) = {
v ∈ H1(Ωα); u = 0 onΓ α

D

}
.

Let us introduce the n-uplets d = (u1,u2,w1,w2,wc) and s = (σ 1, σ 2, t1, t2, tc). The
problem of unilateral contact consists on finding (d, s) such that (uα,wα,wc) satisfy the
kinematic conditions (1), (σ α, tα, tc) satisfy the equilibrium equations (2), (uα, σ α) satisfy
the elastic constitutive relation (3) with the stiffness or elasticity tensors Kα and the strain
tensor ε(u), (wc, tc) satisfy the contact constitutive relation (4). For α = 1, 2:

uα ∈ Vα(uα
D),

uα = wα,

wc = w1 − w2

}

onΓ c.
(1)

∀ v ∈ Vα(0),−
∫

Ωα

σαε(v)dV +
∫

Γ α
N

Fαvd S +
∫

Γ c
tαvd S = 0, (2)

tc − t1 = 0 and tc + t2 = 0 onΓ c.

σα = Kαε(uα) inΩα. (3)

φ(−wc) + φ∗(tc) + tc.wc = 0 onΓ c, (4)

where for any vector v, the normal and the tangential components are defined according to
vn = v.nc and vt = v − vnnc and the convex potentials φ and φ∗ are defined by

φ(v) =
{
0 if vn ≥ 0
+∞ otherwise

and φ∗(t) =
{
0 if tn ≤ 0 and tt = 0
+∞ otherwise .

(5)

Moreover, for any pair (wc, tc) defined on Γ c, the Legendre–Fenchel inequality, see [20],
leads to

φ(−wc) + φ∗(tc) + tc.wc ≥ 0. (6)

Remark 1 Following [20], the relation defined by Eq. (4) is equivalent to the Coulomb’s
constitutive law (7) in a frictionless case:

wc
n ≤ 0, tc

n ≤ 0, tc
n wc

n = 0 and tct = 0 onΓ c, (7)

3 Domain Decomposition Algorithm

In this section,we recall theNeumann–NeumannDomainDecomposition (NNDD) algorithm
used to solve the unilateral contact problem defined by Eqs. (1)–(4). Given a non-negative
parameter θ and an initial arbitrary normal displacement λ1 belonging to Sobolev space
H1/2(Γ c), we define two sequences of displacements uα

p on each solid Ωα , α = 1, 2. Each
iteration p of the NNDD algorithm is divided in two successive steps in which the problems
can be independently solved.



As in the NNDD algorithm some displacement fields λ are imposed on the contact Γ c,
we define the corresponding displacements spaces

Vα(λ) = {
u ∈ Vα(uα

D) and u.nc = λ onΓ c} ,

Vα
0 = {

u ∈ Vα(0) and u.nc = 0 onΓ c} .

– Step 1 Two independent elasticity problems are solved on Ω1 and Ω2:

1. In Ω1, the variational problem writes: Find (u1p, σ
1
p) defined on Ω1 and (w1

p, t
1
p)

defined on Γ c such that

u1p = u1D onΓ 1
D, u1p − w1

p = 0 and w1
pn

1 = λp onΓ c, (8)

∀ v ∈ V1
0 , −

∫

Ω1
σ 1

p : ε(v) dV +
∫

Γ 1
N

F1v d S = 0, (9)

t1p = σ 1
pn

1 onΓ c,

σ 1
p = K1ε(u1p) inΩ1. (10)

2. InΩ2, with the given λp normal displacement defined on Γ c, we solve the following
variational problem corresponding to a unilateral frictionless contact problem on Γ c.
Find (u2p, σ

2
p) defined on Ω2 and (w2

p, t
2
p) defined on Γ c such that

u2p = u2D onΓ 2
D, u2p − w2

p = 0 and wc
p = λpn1 − w2

p onΓ c, (11)

∀ v ∈ V2
0 , −

∫

Ω2
σ 2

p : ε(v) dV +
∫

Γ 2
N

F2v d S +
∫

Γ c
t2pv d S = 0, (12)

tcp + t2p = 0 onΓ c,

σ 2
p = K2ε(u2p) inΩ2, (13)

φ(−wc
p) + φ∗(tcp) + tcp.w

c
p = 0 onΓ c. (14)

– Step 2 With t1p and t2p obtained from Step 1, we solve two independent “Neumann type”
problems:

In Ω1, we solve
⎧
⎨

⎩

Find w1 ∈ V1(0) such that
∫

Ω1
K1ε(w1) : ε(v) dV = −

∫

Γ c

1

2
(t1p + t2p).(v) ∀v ∈ V1(0).

(15)

In Ω2, we solve
⎧
⎨

⎩

Find w2 ∈ V2(0) such that
∫

Ω2
K2ε(w2) : ε(v) dV =

∫

Γ c

1

2
(t1p + t2p).(v) ∀v ∈ V2(0).

(16)

Let ετ be the precision of the algorithm,

ετ = ‖(w1 − w2).n‖H1/2(Γ c)

we have the alternative:

1. If ετ is small enough, the algorithm stops.



2. Else, on Γ c, the normal displacement λp is updated:

λp+1 := λp + θ(w1 − w2).n

and we return to Step 1 for iteration p + 1.

At the end of each iteration this algorithm yields an approximate solution (dp, sp) of the
contact problem (1)–(4), with dp = (u1p,u

2
p,w

1
p,w

2
p,w

c
p) and sp = (σ 1

p, σ
2
p, t

1
p, t

2
p, t

c
p).

The convergence is obtained when λp+1 − λp −→ 0, that is when (w1 − w2).n −→ 0 on
Γ c.

Proposition 1 (w1 − w2).n = 0 on Γ c 
⇒ (dp, sp) = (d, s) the solution of the contact
problem (1)–(4).

Proof Suppose (w1 − w2).n = 0 on Γ c, replacing respectively w1 and w2 in (15) and (16),
we obtain the following equalities:

∫

Ω1
K2ε(w1) : ε(w1) dV = −

∫

Γ c

1

2
(t1p + t2p).(w

1)

∫

Ω2
K2ε(w2) : ε(w2) dV =

∫

Γ c

1

2
(t1p + t2p).(w

2)

Summing up, we obtain, since the stress vectors t1p and t2p have no tangential component:

∫

Ω1
K2ε(w1) : ε(w1) dV +

∫

Ω2
K2ε(w2) : ε(w2) dV = 0.

As the quadratic forms are positive, this means thatw1 ≡ 0 andw2 ≡ 0, and thus, t1p +t2p = 0
on Γ c. In other words, at this point, the solutions uα

p from the NNDD algorithm satisfy the
unilateral contact problem (1)–(4).

As, in the NNDD algorithm, the solution of the unilateral contact problem (1)–(4) is
obtained when the sequence λp is convergent. The convergence of the NNDD algorithm
can be proved by showing that the mapping Tθ for any λ ∈ H1/2(Γ c) and its associated
respective solutions w1 and w2 of (15) and (16),

Tθ (λ) = λ + θ(w1 − w2).n

is a contraction in H1/2(Γ c) for any θ small enough, see [18,19]:

Proposition 2 There is a θ0 > 0 such that for any 0 < θ ≤ θ0, the NNDD algorithm for
unilateral frictionless contact converges.

4 Finite Element Approximation

At each step p, approximate solution of problems (8)–(10), (11)–(14) and (15)–(16) are
computed using a classical FEmethod. The problem (8)–(10) and the problems (15)–(16) lead
to standard linear variational problems and the problem (11)–(13) is solved as a variational
problem with affine inequality constraint.



Let Vα
h be some finite element spaces respectively discretizing the Sobolev spaces Vα =

H1(Ωα). We define

Vα
h (uα

D) = Vα(uα
D) ∩ Vα

h

Vα
h (0) = Vα(0) ∩ Vα

h ,

V1
h (λ) = V1(λ) ∩ V1

h,

V1
h (0) = V1(0) ∩ Vα

h ,

and

K2
h(λ) = {v ∈ V2

h(u2D) and v.nc ≥ λ on Γ c}.

The approximate solutions of (8)–(10), (11)–(14), (15) and (16) are respectively given by

⎧
⎪⎨

⎪⎩

Find u1p,h ∈ Vα
h (λp) such that

∫

Ω1
K1ε(u1p,h)ε(v)dV =

∫

Γ 1
N

F1v d S ∀v ∈ Vα
h (0),

(17)

⎧
⎪⎨

⎪⎩

Find u2p,h ∈ Kα
h (λp) such that

∫

Ω2
K2ε(u2p,h)ε(v)dV ≥

∫

Γ 2
N

F2v d S ∀v ∈ Kα
h (λp),

(18)

⎧
⎪⎨

⎪⎩

Find w1
p,h ∈ Vα

h (u1D) such that
∫

Ω1
K1ε(w1

p,h)ε(v)dV =
∫

Γ c
−1

2
(t1p,h + t2p,h).v d S ∀v ∈ V1

h(0),
(19)

⎧
⎪⎨

⎪⎩

Find w2
p,h ∈ Vα

h (u2D) such that
∫

Ω2
K2ε(w2

p,h)ε(v)dV =
∫

Γ c

1

2
(t1p,h + t2p,h).v d S ∀v ∈ V2

h(0),
(20)

where t1p,h in (19) and t2p,h in (20) are derived from the fields u1
p,h and u2

p,h computed in Eqs.
(17) and (18) by

tip,h = σ i
p,hni onΓ i where σ i

p,h = Kiε(ui
p,h) for i = 1, 2

and

wc
p,h = λpnc − w2

p,h onΓ c.

We shall denote

dp,h = (u1p,h,w1
p,h,u2p,h,w2

p,h,wc
p,h) (21)

sp,h = (σ 1
p,h, t1p,h, σ 2

p,h, t2p,h, tcp,h). (22)

Remark 2 For the sake of simplicity, the Finite Element formulations (17)–(20) are written
here for matching meshes at the interface, however, the extension to non matching meshes
is straightforward (see [8]).



5 Error Estimation

5.1 Error in the Constitutive Relation

Todevelop an error estimation for a contact problemweuse amethod based on the constitutive
relation error [5]. We recall here the error measure proposed in [8] for a global unilateral
contact problem. Let us consider an approximate solution of problem defined by Eqs. (1)–(4),
denoted (d̂, ŝ). The pair (d̂, ŝ) is said to be an admissible solution if (d̂, ŝ) ∈ Uad ×Sad where

Uad = the set of the kinematicaly admissible fields

= {d̂ = (û1, û2, ŵ1, ŵ2, ŵc)/d̂ satisfies Eq.(1) and φ(−ŵc) = 0},
and

Sad = the set of the statically admissible fields

= {ŝ = (σ̂
1
, σ̂

2
, t̂1, t̂2, t̂c)/ŝ satisfies Eq.(2) and φ∗(t̂c) = 0}.

The constitutive relation error on the pair (d̂, ŝ) is defined by

eC RE (d̂, ŝ) =
[

2∑

α=1

‖σ̂α − Kαε(ûα)‖2σ ,Ωα + 2
∫

Γ c
t̂c ŵc d S

]1/2

, (23)

with

‖σ̂‖2σ ,Ωα =
∫

Ωα

σ̂ : (Kα)−1σ̂ .

Note that factor 2 before the integral of expression (23) will prove sufficient to obtain the
upper bound property of Proposition 6.

Remark 3 It should be noted that as φ(−̂w
c
) = 0 and φ∗(t̂c) = 0, from (6), the quantity

t̂cŵc is greater that zero on Γ c.

As an extension of the Prager–Synge theorem [21], it was shown in [8] that

eC RE (d̂, ŝ) ≥
[

2∑

α=1

‖σ̂α − σ α‖2σ ,Ωα + ‖ûα − uα‖2u,Ωα

]1/2

, (24)

with

‖û‖2u,Ωα =
∫

Ωα

Kαε(û) : ε(û).

5.2 An a Posteriori Error Estimator for a Discretized Neumann–Neumann Domain
Decomposition Algorithm

When the formulation of the contact problem is obtained by a domain decomposition method
the global error depends not only on the FE discretization error but also on the convergence
of the iterative algorithm used (i.e. an algebraic error). Here, we develop an error measure
based on the constitutive relation error for a unilateral contact problem solved by aNeumann–
Neumann domain decomposition algorithm. Let us introduce new admissible sets defined at
each iteration p of the NNDD algorithm by



U1
ad(λp) = {d̂1 = (û1, ŵ1)/d̂1 satisfies Eq.(8)},

S1
ad = {ŝ1 = (σ̂

1
, t̂1)/ŝ1 satisfies Eq. (9)},

U2
ad(λp) = {d̂2 = (û2, ŵ2, ŵc)/d̂2 satisfies Eq.(11) and φ(−ŵc) = 0},

S2
ad(λp) = {ŝ2 = (σ̂

2
, t̂2, t̂c)/ŝ2 satisfies Eq.(12) and φ∗(t̂c) = 0}.

Proposition 3 The pair (d̂1p, ŝ
1
p) ∈ U1

ad(λp) × S1
ad is the solution of problem (8)–(10) if

e1C RE (d̂1p, ŝ
1
p) =

[
‖σ̂ 1

p − K1ε(û1p)‖2σ ,Ω1

]1/2 = 0. (25)

Proof Since (d̂1p, ŝ
1
p) belongs to U1

ad(λp) × S2
ad(λp), Eqs. (8) and (9) are satified. Eq. (10)

then follows from the condition (25).

Proposition 4 The pair (d̂2p, ŝ
2
p) ∈ U2

ad(λp) × S2
ad(λp) is the solution of problem (11)–(14)

if

e2C RE (d̂2p, ŝ
2
p) =

[
‖σ̂ 2

p − K2ε(û2p)‖
2

σ ,Ω2 + 2
∫

Γ c
t̂cp ŵ

c
p d S

]1/2
= 0. (26)

Proof Since (d̂2p, ŝ
2
p) belongs to U2

ad(λp) × S2
ad(λp), Eqs. (11) and (12) are satisfied. More-

over as d̂2p ∈ U2
ad(λp) and ŝ2p ∈ S2

ad(λp), we have ŵc
p ≥ 0 and t̂cp ≥ 0 on Γ c and, see

Remark 3: ∫

Γ c
t̂cp ŵ

c
p d S ≥ 0. (27)

It follows then from (26) that σ̂ 2
p −K2ε(û2p) = 0 onΩ2, hence that (d̂2p, ŝ

2
p) satisfy Eq. (13),

and
t̂cp.ŵ

c
p = 0 onΓ c. (28)

Morover, as d̂2p ∈ U2
ad(λp) and ŝ2p ∈ S2

ad(λp), we have φ(−ŵc) = 0 and φ(t̂cp) = 0, hence
Eq. (14) is satisfied.

Remark 4 We emphasize that the pair (d̂p = (d̂1p, d̂
2
p), ŝp = (ŝ1p, ŝ

2
p)) is not, a priori,

an admissible solution for the unilateral contact problem (i.e. /∈ Uad × Sad ) because the
equilibrium equation (2) is not necessarily satisfied since t̂cp − t̂1p = 0 has not been imposed.

We define then an error estimator for the problem defined by Eqs. (8)–(14), with

eC RE (d̂p, ŝp) =
[(

e1C RE (d̂1p, ŝ
1
p)

)2 +
(

e2C RE (d̂2p, ŝ
2
p)

)2]
1
2

. (29)

Following from Proposition 3 and 4, we have

Proposition 5 The error estimator eC RE (d̂p, ŝp) defined in (29), quantifies the error due to
the finite element discretization at each step of the algorithm.

eC RE (d̂p, ŝp) = 0 ⇔ (d̂1p, ŝ
1
p, d̂

2
p, ŝ

2
p) is the exact solution of (8)−(14) for a fixed λp.

Furthermore, we have,

Proposition 6 The error estimator (29) is an upper bound for the exact error of (8)–(14)
for a fixed λp.



Proof For a given λp , let us denote by (d1p, s
1
p), resp. (d

2
p, s

2
p), the exact solution of problem

(8)–(10), resp. problem (11)–(14), from step 1 of NNDD algorithm.
As (8)–(10) defines a linear elastic problem we can use the Prager–Synge theorem [21]

to obtain

(e1C RE )2 = ‖σ̂ 1
p − Kε(û1p)‖

2

σ ,Ω1 = ‖σ̂ 1
p − σ 1

p‖
2

σ ,Ω1 + ‖û1p − u1p‖2u,Ω1 . (30)

Considering (11)–(14), the error estimator writes

(e2C RE )2 = ‖σ̂ 2
p − K2ε(û2p)‖

2

σ ,Ω2 + 2
∫
t̂2pŵ

2
p

= ‖σ̂ 2
p − σ 2

p + K2ε(u2p) − K2ε(û2p)‖
2

σ ,Ω2 + 2
∫

Γ c
t̂2pŵ

2
pd S

= ‖σ̂ 2
p − σ 2

p‖
2

σ ,Ω2 + ‖û2p − u2p‖2u,Ω2 + C

with

C = 2
∫

Ω2
(σ̂

2
p − σ 2

p) : ε(u2p − û2p)dV + 2
∫

Γ c
t̂2pŵ

2
pd S. (31)

In other words, we have

(e1C RE )2 + (e2C RE )2 = ‖σ̂ 1
p − σ 1

p‖
2

σ ,Ω1 + ‖û1p − u1p‖2u,Ω1

+‖σ̂ 2
p − σ 2

p‖
2

σ ,Ω2 + ‖û2p − u2p‖2u,Ω2 + C.

Thus, we only need to show that C ≥ 0:
As u2p − û2p ∈ V2

0 and thanks to Eq. (12) we have

∫

Ω2
σ 2

p : ε(u2p − û2p)dV =
∫

Γ 2
N

F2(u2p − û2p) d S +
∫

Γ c
t2p(u

2
p − û2p) d S

∫

Ω2
σ̂
2
p : ε(u2p − û2p)dV =

∫

Γ 2
N

F2(u2p − û2p) d S +
∫

Γ c
t̂2p(u

2
p − û2p) d S

therefore by substraction, we obtain
∫

Ω2
(σ̂

2
p − σ 2

p) : ε(u2p − û2p)dV =
∫

Γ c
(t̂2p − t2p)(w

2
p − ŵ2

p) d S.

As u2p and û2p belong to V2(λp) their restriction to Γ c are respectively equal to w2
p and ŵ2

p ,
so that C writes

C = 2
∫

Γ c
(t̂2p − t2p)(w

2
p − ŵ2

p) d S + 2
∫

Γ c
t̂2pŵ

2
p

= 2
∫

Γ c
(t̂2pw

2
p + t2pŵ

2
p − t2pw

2
p) d S

= 2
∫

Γ c
(t̂2pw

2
p + t2pŵ

2
p) d S

Finaly, remarking that φ∗(t̂2p) = 0 and φ(w2
p) = 0, as well as φ∗(t2p) = 0 and φ(ŵ2

p) = 0,
see (6), leads to C ≥ 0 which concludes the proof.



In order to obtain a global error estimator for the contact problem, we define an admissible

solution for the unilateral contact problem (
ˆ̂dp = (

ˆ̂d1p, ˆ̂d2p), ˆ̂sp = (ˆ̂s1p, ˆ̂s2p)) that is

(
ˆ̂d1p, ˆ̂s1p) ∈ U1

ad(λp) × S1
ad ,

(
ˆ̂d2p, ˆ̂s2p) ∈ U2

ad(λp) × S2
ad(λp),

ˆ̂tcp − ˆ̂t1p = 0.

The global error estimator for the contact problem is then defined by

ηglo = eC RE (
ˆ̂dp, ˆ̂sp) =

[(
e1C RE (

ˆ̂d1p, ˆ̂s1p)
)2

+
(

e2C RE (
ˆ̂d2p, ˆ̂s2p)

)2
] 1

2

. (32)

We have the following property:

Proposition 7 Let (
ˆ̂dp, ˆ̂sp) be an admissible solution for the unilateral contact problem, it

is the exact solution of global unilateral contact problem defined by (1)–(4) if and only if

eC RE (
ˆ̂dp, ˆ̂sp) = 0.

Proof If (
ˆ̂dp, ˆ̂sp) is the exact solution of the global unilateral contact problem, then it satisfy

Eqs. (3)–(4), then eC RE (
ˆ̂dp, ˆ̂sp) = 0 follows immediately.

If eC RE (
ˆ̂dp, ˆ̂sp) = 0, according to Propositions 3 and 4, as (

ˆ̂d1p, ˆ̂s1p) ∈ U1
ad(λp)×S1

ad and

(
ˆ̂d2p, ˆ̂s2p) ∈ U2

ad(λp) ×S2
ad(λp) it follows that (

ˆ̂dp, ˆ̂sp) satisfies Eqs. (8)–(14). From Eq. (12)

it follows that ˆ̂tcp + ˆ̂t2p = 0, which combined with ˆ̂tcp − ˆ̂t1p = 0 leads to ˆ̂t1p + ˆ̂t2p = 0. Then,

from Proposition 1, ( ˆ̂dp, ˆ̂sp), is the exact solution of the global unilateral contact problem.

Remark 5 The admissible displacement fields are easily recovered, since the finite element
fields satisfy the kinematic constraints and wc

p,h(xi ) ≥ 0, where xi denote the nodes of the
FEM on the contact zone Γ c.

ˆ̂d1p = (u1p,h,w1
p,h) and ˆ̂d2p = (u2p,h,w2

p,h,wc
p,h).

However, the stress fields and the traction forces sp,h , see (22), computed by the algorithm do

not satisfy the equilibrium equations. The pair (ˆ̂s1p, ˆ̂s2p) is recovered from the finite element
solution and the data in 3 steps

– The first step, consists in recovering admissible traction fields (
ˆ̂t1, ˆ̂t2, ˆ̂tc). We built a

traction ˆ̂tc such that φ∗(ˆ̂tc) = 0 and which minimizes in the least square sense J (
ˆ̂tc)

J (
ˆ̂tc) =

∫

Γ c

(
ˆ̂tc − 1

2

(
t1h,p − t2h,p

))2

d S.

– The second step, consists in recovering stress fields σ̃ α
h,p that satisfy the FE-equilibrium

equations on each solid Ωα . Let ũα
h,p ∈ Vα

h such that σ̃α
h,p = Kαε(ũα

h,p) and

∀ v ∈ Vα
h,0, −

∫

Ωα

Kαε(ũα
h,p) : ε(v) dV +

∫

Γ α
N

Fαv d S +
∫

Γ c

ˆ̂tαv d S = 0.



– Finally, the recovery of equilibrated stress fields ˆ̂σ α from σ̃ α
h,p = Kαε(ũα

h,p), F
α and

ˆ̂tα in each subdomain Ωα is the most technical point. This step is performed with a
traction-free recovery technique developed in [22].

Let us define the following error between the exact and approximate solution of the contact
problem

eh,p =
[

2∑

α=1

‖uα − uα
h,p‖2u,Ωα

]1/2

(33)

Repating the proof of Proposition 6 with the exact solution of the unilateral contact problem
leads to

Proposition 8 The global error estimator eC RE (
ˆ̂dp, ˆ̂sp) is an upper bound of the error eh,p.

5.3 Error Indicators for the NNDD Algorithm and for the FE Discretization

Following the method proposed in [23–25], we propose here two error indicators that allow
us to estimate separately the part of the error due to the FE discretization from the part due to
the NNDD algorithm. The discretization error is defined as the limit of the global error when
the convergence criterion of the iterative algorithm tends to zero. The NNDD algorithm error
is defined as the limit of the global error as the mesh size h tends to zero.

5.3.1 Error Indicator for the FE Discretization

To define FE discretization error indicator ηF E , let us consider the reference problem
defined by the step p of the NNDD algorithm: Find dp = (u1p,w

1
p,u

2
p,w

2
p,w

c
p) and

sp = (σ 1
p, t

1
p, σ

2
p, t

2
p, t

c
p) that satisfy equations (8)–(14). The only approximation intro-

duced between (dp, sp) and the finite element solution (dp,h, sp,h) is the FE discretization.
We have shown in Sect. 5.2 that the error in the constitutive relation eC RE (d̂p, ŝp) defined in
Eq. (29) is an error estimator for this reference problem. The quantity eC RE (d̂p, ŝp) is used
to define a FE discretization error indicator for the unilateral contact problem

ηF E = eC RE (d̂p, ŝp). (34)

Remark 6 As shown on Sect. 5.2 this error indicator is however an upper bound of the exact
solution of (8)–(14) at each step of the discretized NNDD algorithm.

5.3.2 Error Indicator for the NNDD Algorithm

To define aNNDDalgorithm error indicator ηN N , let us denote by (Ph) the reference problem
defined by finite element discretization of the unilateral contact problem Eqs. (1)–(4) and
its solution by (dh, sh). The only approximation introduced between the solution (dh, sh)

and the finite element solution (dp,h, sp,h) is the approximation introduced by the NNDD
algorithm. Let (d̂h, ŝh) an admissible solution for the problem (35)–(37)



ûα
h ∈ Vα

h (uα
D)

ûα
h = ŵα

h ,

ŵc
h = ŵ1

h − ŵ2
h

}

onΓ c.
(35)

∀ v ∈ Vα
h (0),−

∫

Ωα

σ̂
α
h ε(v)dV +

∫

Γ α
N

Fαvd S +
∫

Γ c
t̂αh vd S = 0,

∫

Γ c
(t̂ch − t̂1h)vd S = 0 and

∫

Γ c
(t̂ch + t̂2h)vd S = 0 onΓ c, (36)

q̂n ≤ 0 and C�̂n ≤ 0 and C�̂t = 0, (37)

where q̂n is the vector of the nodal values of ŵc
h , �̂n and �̂t are respectively the normal and

the tangentials components of the nodal values of t̂ch , and C is the contact matrix.

The discretized version eC RE,h(d̂h, ŝh) of the error in the constitutive relation defined
by Eq. (23) is an error estimator for this reference problem, and is used to define NNDD
algorithm error indicator for the unilateral contact problem

ηN N = eC RE,h(d̂h, ŝh) =
[

2∑

α=1

‖σ̂α
h − Kαε(ûα

h )‖2σ ,Ωα + 2q̂T
n

(
C�̂n

)
]1/2

. (38)

6 Numerical Results

In this section we give numerical results on two 2D examples. Both examples contain two
elastic bodies, one of them clamped along a part of its boundary, whereas the other domain
is subject to a non-zero imposed displacement. The results are very similar in the two chosen
example, but showing different performances of the NNDD algorithm.

6.1 Example 1

The first example is shown on Fig. 2. The lower boundary of structure Ω1 is clamped, on
structureΩ2 the applied force F2 has a linear distribution (F2

max = 107 Mpa) and the applied
displacement is u2

D = −10−4 m. The Young’s modulus for both structures is E = 210GPa
and the Poisson’s ratio is ν = 0.27. The coefficient θ of the NNDD algorithm is set to 0.25.

To evaluate the computed global estimator, we compute a reference solution denoted by
ure f and we define the reference error ere f and the effectivity index γ by

ere f =
[

2∑

α=1

‖uα
re f − uα

h,p‖2u,Ωα

]1/2

and γ = ηglo

ere f
. (39)

To obtain a reliable reference solution we choose a mesh size hre f = 1/8h and we set the
convergence criteria of the NNDD algorithm to ετ ≤ 10−8, where we chose to define the
precision of the algorithm as

ετ =
2max

Γ c
|t1p + t2p|

max
Γ c

|t1p| + max
Γ c

|t2p|
,

where t1p and t2p are obtained from Step 1 of the NNDD algorithm at iteration p.



Fig. 2 Example 1, unilateral contact reference model (left)—distorted structures (right)

The results are reported in Fig. 3.We have represented the evolution of the effectivity index
γ as a function of the number of degrees of freedom (nDoF ) for a fixed number of iterations
of the NNDD algorithm (nite = 3) and its evolution as a function of the number of iterations
of the NNDD algorithm for a fixed number of degrees of freedom, nDoF = 1,002. The
results show the upper bound property of the global error estimator. It is worth noticing that
the effectivity index seems rather insensitive to the FE discretization as well to the number
of iterations.

Figure 4 shows the evolutions of the global error estimator ηglo, the FE error indicator
ηF E , and the NNDD error indicator ηN N as functions of the number of nite the number of
iterations of the NDDD algorithm for a fixed number of DoF, nDoF = 1,002. The global
error ηglo tends to an horizontal asymptote which is the FE error indicator ηF E , whereas
the convergence of NNDD error indicator ηN N as a function of the number of iterations is
shown.

Figure 5 shows the evolution of the global error estimator ηglo, of the FE error indicator
ηF E , and of the NNDD error indicator ηN N as a function of the number nDoF of the degree
of freedom (DoF), for a fixed number iterations of the NDDD algorithm nite = 6 for the
example 1. The global error ηglo tends to an horizontal asymptote which is the NNDD error
indicator ηN N , whereas the convergence of FE error indicator ηF E as a function of the number
of DoF is shown.

The ηglo can be numerically related to ηN N and ηF E by relation (40).
(
ηglo

)2 ≈
(
ηF E

)2 +
(
ηN N

)2
. (40)

We illustrate the relation (40) in Fig. 6, where are drawn the errors ratio r as a function of
the number of iteration and the number of nodes.

r = ηglo

[(
ηF E

)2 + (
ηN N

)2]1/2
.



Fig. 3 Example 1, effectivity index: as a function of the number of DoF (left)—as a function of the number
of iterations (right)

Fig. 4 Example 1—computed errors as a function of the number iterations of the NNDD algorithm



Fig. 5 Example 1—computed errors as a function of the number of Nodes

Fig. 6 Example 1—errors ratio (40)
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Fig. 7 Example 2—unilateral contact reference model (left)—distorted structures (right)

6.2 Example 2

The second Example is shown in Fig. 7. The boundary Γ 2
D of domain Ω2 is subject to a non-

zero imposed displacement whereas the second domainΩ1 is clamped along some boundary
Γ 1

D . Some superficial forces F1
N are imposed to illustrate loss of contact at the interface. The

vertical imposed displacement is set to u1
D = 10−4, the Young’s modulus for both structure

is set to E = 210Gpa and the Poisson modula in ν = 0.27. The coefficient θ of the NNDD
algorithm is studied in the range [0.2, 0.9].

As for the Example 1, we first study the evolution of the global error estimator ηglo, of the
FE error indicator ηF E , and of the NNDD error indicator ηN N as a function of the number
nDoF of the degree of freedom (DoF), for a fixed number iterations of the NDDD algorithm
nite = 3 and a fixed value of the NNDD parameter θ = 0.45, which seems “optimal” see Fig.
9. While showing a different performance of the NNDD algorithm for the Example 1, the
graphic of Fig. 8 is very similar to Fig. 5.We test the a posteriori error estimates of the NNDD
algorithm for different values of θ , and two meshes, one coarse mesh with 380 nodes (760
DoF) and one finer mesh with 5,994 nodes (11,992 DoF), for 3 iterations of the algorithm
(see Fig. 9). For both meshes, we notice an apparently optimal value near 0.4 ≤ θ ≤ 0.5. We
also remark that the NNDD algorithm errors are very similar in both fine and coarse meshes.
The discretisation errors are naturally greater in the coarse mesh, but it doesn’t change much
with θ .

In Fig. 10 we draw the errors ratio r , defined in (40), as a function of the parameter θ

after 3 iterations of the NNDD algorithm on the two different meshes. The figure shows that
relation (40) holds for that example.

7 Conclusion

A global error estimator has been introduced to verify the finite element approximate solu-
tion of an unilateral contact problem computed by a natural Neumann–Neumann domain



Fig. 8 Example 2—computed errors as a function of the number of DoF

Fig. 9 Example 2, error indicators for different values of θ , coarse 380 nodes mesh (left) and finer 5,994
nodes mesh (right) after 3 iterations
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Fig. 10 Example 2, errors ratio r as a function of θ , coarse mesh (left, 380 nodes) and finer mesh (right,
5,994 nodes) after three iterations of NNDD algorithm

decomposition algorithm. It takes into account all the errors due to discretization, i.e. both
the errors due to the space discretization and those due to the domain decomposition algo-
rithm. The proposed error estimator is based on the error in the constitutive relation and
on the construction of admissible fields from the finite element solution. The construction
of the statically admissible fields is done in three steps: the first step consists in building
admissible traction fields on the contact zone, in a second step stress fields that satisfy the
FE-equilibrium are recovered, then equilibrated stress fields are computed by a traction free
recovery technique.Moreover, two error indicators have been introduced to estimate the error
due to either the space discretization or the domain decomposition algorithm solely. The space
error indicator is the error in the constitutive relation associated with the reference problem
solved at a given iteration of the Neumann–Neumann algorithm. The NNDD algorithm error
indicator is the error in the constitutive relation associated with the reference problem solved
on a fixed mesh. Satisfactory properties for the indicators have been demonstrated. With
these tools, it would be possible to adapt the quality of the mesh during the iterations of the
domain decomposition algorithm and to control the final quality of the computation. The
extension of these error estimates to other domain decomposition algorithms for unilateral
contact problem, such as FETI [26,27] is under consideration.
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