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ABSTRACT. When using finite element and finite difference methods to approximate

eigenvalues of 2mth-order elliptic problems, the number of reliable numerical eigenvalues

can be estimated in terms of the total degrees of freedom N in resulting discrete systems.

The truth is worse than what we used to believe in that the percentage of reliable eigenvalues

decreases with an increased N , even though the number of reliable eigenvalues increases with

N .
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1. Introduction

When approximating PDE eigenvalue problems by numerical methods such as finite

difference and finite element, it is common knowledge that only a small portion of numerical

eigenvalues are reliable. However, this knowledge is only qualitative rather than quantitative

in the literature [1, 9]. In this paper, we will investigate the number of “trusted” eigenvalues

by the finite element (and the related finite difference method results obtained from mass

lumping) approximation of 2mth order elliptic PDE eigenvalue problems. Our two model

problems are the Laplace and bi-harmonic operators, for which a solid knowledge regarding

magnitudes of eigenvalues are available in the literature [2, 3, 4, 6, 7, 8, 11]. Combining

this knowledge with a priori error estimates of the finite element method [1, 9], we are

able to figure out roughly how many “reliable” eigenvalues can be obtained from numerical

approximation under a pre-determined convergence rate.

Let us begin with a simple example, which was used in [1] and [9] for different purposes.

Approximating the one-dimensional eigenvalue problem

−u′′ = λu, u(0) = 0 = u(1); λj = (jπ)2, uj(x) = sin(jπx).

by linear finite element on the uniform mesh of n subintervals results in an (n−1)× (n−1)

linear algebraic system of generalized eigenvalue problems
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where hn = 1. Numerical eigenvalues are, for θj = jπh, j = 1, 2, . . . , n− 1,

λhj =
3

h2

2(1− cos θj)

2 + cos θj
= (jπ)2 +

h2

12
(jπ)4 +

h4

360
(jπ)6 + · · · (1.2)

With the mass lumping (or equivalently the central finite difference scheme),

λh,lj =
2(1− cos θj)

h2
= (jπ)2 − h2

12
(jπ)4 +

h4

360
(jπ)6 + · · · (1.3)

Averaging the above two numerical eigenvalues λh∗j = (λhj + λh,lj )/2 yields

λh∗j = (jπ)2 +
h4

360
(jπ)6 + · · · (1.4)

We consider some special cases, the last and the middle (for even n) eigenvalues:

λhn−1 =
3

h2

2(1− cos θn−1)

2 + cos θn−1
= 12n2 − 9π2 +O(

1

n2
),

λh,ln−1 =
2(1− cos θn−1)

h2
= 4n2 − π2 +O(

1

n2
),

comparing with the exact value λn−1 = ((n−1)π)2 = π2n2−2πn+π2 ≈ 9.8696n2−2πn+π2;

λhn/2 =
3

h2
= 3n2, λh,ln/2 =

2

h2
= 2n2,

comparing with the exact value λn/2 =
π2

4
n2 ≈ 2.4674n2. We see that in both cases, relative

errors are of order O(1).

Next, we investigate how many numerical eigenvalues have their relative errors converge

in our expected rate. Without loss of generality, let s > 1 be a factor of n. From (1.2) and

(1.3),

λhn/s = (
nπ

s
)2 +

h2

12
(
nπ

s
)4 ± h4

360
(
nπ

s
)6 + · · · ,

λh,ln/s = (
nπ

s
)2 +

h2

12
(
nπ

s
)4 − h4

360
(
nπ

s
)6 + · · · ,

Relative errors (note that hn = 1):

λhn/s − λn/s
λn/s

=
h2

12
(
nπ

s
)2 +

h4

360
(
nπ

s
)4 · · · = π2

12

1

s2
+

π4

360

1

s4
+ · · · , (1.5)

λn/s − λ
h,l
n/s

λn/s
=
π2

12

1

s2
− π4

360

1

s4
+ · · · (1.6)

We observe in (1.5) and (1.6) that the convergence rate depends on s. In order to have

a quadratic convergence, as we usually expected from the standard convergence theory
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for eigenvalues, we would need s = O(n) and hence n/s = O(1), which means that only

the first few numerical eigenvalues qualify. However, if we relax to linear convergence, we

would require s = O(
√
n), which leads to n/s = O(

√
n), i.e., we have about

√
n = O(h−1/2)

reliable numerical eigenvalues whose relative errors converge at least linearly. If we only

demand a weak convergence: hα (α < 1), we would have s = O(nα/2), n/s = O(n1−α/2),

hence more numerical eigenvalues would qualify.

Recall the extrapolated numerical eigenvalue (1.4), the relative error of λh∗n/s is

λh∗n/s − λn/s
λn/s

=
π4

360

1

s4
+O(s−6).

Following the same reasoning as in the above, for λh∗j , we have roughly
√
n numerical

eigenvalues converge at least quadratically, and about n3/4 numerical eigenvalues converge

at least linearly, which is the same as under quadratic elements (which will be explained

later by our general theory).

It is interesting to note that the relative error

λh∗n/2 − λn/2
λn/2

=
2.5n2 − n2π2/4

n2π2/4
=

10

π2
− 1 ≈ 1.32%,

is acceptable in practice. However, for the last eigenvalue, the relative error for the averaged

numerical approximation

λn−1 − λh∗n−1

λn−1
=

(n− 1)2π2 − 8n2 + 5π2 +O(n−2)

(n− 1)2π2
≈ 1− 8

π2
≈ 18.94%

is not too much of an improvement over λhn−1.

2. Model Problems and Finite Element Approximation

Our model problems are the Laplace and bi-harmonic operators. The first model is

−∆u = λu in Ω, u = 0 on ∂Ω. (2.1)

The countable sequence of eigenvalues is a classic result: 0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · ·
tending to +∞ and a sequence of corresponding eigenfunctions u1, u2, . . . , uk, . . . such that

each uk satisfies (2.1). The eigenfunctions are orthogonal in L2(Ω) and they are customarily

normalized so that ‖uk‖L2(Ω) = 1 for all k. The second model is

∆2u = µu in Ω, u = 0,
∂u

∂nnn
= 0 on ∂Ω, (2.2)

which also has a set of normal modes of vibration 0 < µ1 ≤ µ2 · · · ≤ µk ≤ · · · and a

corresponding set of eigenfunctions.
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Next, we consider finite element approximations of eigenvalue problems of elliptic oper-

ators. First, we introduce some notations and classical results starting from the following

abstract form: Find (λ, u) ∈ R×H, for a suitable Hilbert space H, such that

a(u, v) = λb(u, v), ∀v ∈ H, (2.3)

where a(·, ·) is a bilinear form on H deduced from a self-adjoint 2m-order elliptic operator

on a smooth domain in Rd and b(·, ·) is a symmetric positive definite bilinear form on H.

In our discussion, we include multiple eigenvalues. We consider conforming finite element

methods. To be more precise, let (λh, uh) solve (2.3) on a finite dimensional subspace

Vh ∈ H, which consists of polynomials of degrees fewer than k with k > m ≥ 1 on a shape

regular and quasi-uniform triangulation Th. We further define the energy norm ‖ · ‖H on H

and introduce the following notations [1]:

M(λ) = {u : all eigenvectors of (2.3) corresponding to λ, ‖u‖H = 1},

εh(λ) = sup
u∈M(λ)

inf
χ∈Vh

‖u− χ‖H .

3. Theoretical Issues

More than a century ago, Weyl obtained the following asymptotic behavior for the nth

eigenvalue of the Laplace operator, problem (2.1) [11]:

λn ≈ 4π2

(
n

ωd|Ω|

)2/d

, (3.1)

where ωd = πd/2/Γ(1 + d/2) denote the volume of the unit ball in Rd. Pleijel extended it

to (2.2) by showing that [6]

µn ≈ 16π4

(
n

ωd|Ω|

)4/d

. (3.2)

Further, Polya proved in 1961 that for a tiling domain Ω [7]

λn ≥ 4π2

(
n

ωd|Ω|

)2/d

, (3.3)

and he further conjectured that (3.3) is valid for arbitrary domains. So far, the best known

result along this line was due to Li-Yau [4]

n∑
i=1

λi ≥
dn

d+ 2
4π2

(
n

ωd|Ω|

)2/d

→ λn ≥
d

d+ 2
4π2

(
n

ωd|Ω|

)2/d

. (3.4)

For more details, the reader is referred to [2, 8] and references therein. For the purpose of

this article, (3.1) and (3.2) would be sufficient, and it is well know that µk ≥ λ2
k.
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Proposition 1 (Strang-Fix 1973 [9]): Using conforming finite element spaces of degree

smaller than k(> m ≥ 1) on a shape regular and quasi-uniform triangulation in approxi-

mating a 2m-order elliptic operator eigenvalue problem, the following relative error bound

holds for the ith eigenvalue,

0 <
λhi − λi
λi

≤ Ch2(k−m)λ
k/m−1
i , (3.5)

when associated eigenfunction is sufficiently smooth.

Proposition 2 (Babuška-Osborn 1989 [1]): Under the same assumption as in Propo-

sition 1, for the ith eigenfunction, there exist positive constants c and C independent of

(λi, ui) and h, such that

cε2h(λ) ≤ λhi − λi ≤ Cε2h(λ). (3.6)

Proposition 3 [5]: Under the same assumption as in Proposition 1, for the ith eigen-

function, there exist positive constants C independent of (λi, ui) and h, such that

εh(λi) ≥ Chk−mλk/(2m)
i .

Combining Propositions 1-3, we conclude that the relative error for ith eigenvalue be-

haves like
λhi − λi
λi

≈ h2(k−m)λ
k/m−1
i . (3.7)

Here “≈” means both upper and lower error bounds are of the same order. This relative

error estimate is the first basic assumption for our following main theorem. Our second

assumption is about the asymptotic growth of the exact eigenvalues

λj = O(j2m/d). (3.8)

Theorem. Suppose that we solve a 2m-order elliptic equation on a domain Ω ⊂ Rd

by the finite element method (conforming or non-conforming) of polynomial degree k − 1

under a shape regular and quasi-uniform mesh with mesh-parameter h. Assume that the

exact eigenvalues grow as (3.8) and the relative error can be estimated by (3.7). Then there

are about

jN = N (k−m−α/2)/(k−m)(k − 1)−d(k−m−α/2)/(k−m) (3.9)

reliable numerical eigenvalues with relative error of λJN , converges at rate hα for α ∈
(0, 2(k −m)]. Here N is the total degrees of freedom.

Proof: If we want the relative error (3.7) to converge at rate hα, we would have

h2(k−m)λ
k/m−1
j = hα, or (hλ

1/(2m)
j )2(k−m) = hα. (3.10)

According to (3.8), identity (3.10) leads to

(hj1/d)2(k−m) = hα, or j = h−d(k−m−α/2)/(k−m). (3.11)
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On a shape regular and quasi-uniform mesh with mesh parameter h in Rd, a piecewise

polynomial space of degree k − 1 has the total degrees of freedom N = O((k − 1)dh−d),

therefore there are about

jN = N (k−m−α/2)/(k−m)(k − 1)−d(k−m−α/2)/(k−m) (3.12)

reliable numerical eigenvalues with λJN converges at rate hα.

Remark 1. From (3.1) and (3.2), we know (3.8) is valid at least for the Laplace (m = 1)

and bi-harmonic (m = 2) operators. From Propositions 1-3, our theory covers standard con-

forming finite elements. In addition, our theory would cover nonconforming finite elements,

even discontinuous Galerkin methods, as long as (3.7) is valid.

1) Special case, second-order problem m = 1.

1.1) Linear element k = 2 ” (For notational consistency with [9], k = 2 represent linear

element here.), there are about N1−α/2 reliable numerical eigenvalues converging at least

with rate hα. If we demand optimal convergence rate α = 2, we have N0 = 1, which

indicates that only some earlier eigenvalues can be approximated at quadratic rate h2.

However, if we relax the convergence requirement to linear rate α = 1, we would have about√
N numerical eigenvalues qualify.

1.2) For quadratic element k = 3, there are about 2−d(1−α/4)N1−α/4 reliable numerical

eigenvalues converging at least with rate hα. If we demand optimal convergence rate α = 4,

we have N0 = 1, which indicates that only some earlier eigenvalues can be approximated at

quartic rate h4. However, if we demand only second order convergence with α = 2, we would

have about 2−d/2
√
N numerical eigenvalues qualify. If we further relax the convergence rate

to linear, there will be roughly 2−3d/4N3/4 qualified numerical eigenvalues.

2) Special case, fourth-order problem m = 2. Identity (3.12) leads to

jN = N (k−2−α/2)/(k−2)(k − 1)−d(k−2−α/2)/(k−2).

In order to have a meaningful rate of convergence, k > 2, which means that we need at

least quadratic element. Indeed, a fourth-order problem requires higher order elements.

2.1) Quadratic element k = 3, there are about N1−α/22−d(1−α/2) reliable numerical

eigenvalues converging at least with rate hα. If we demand optimal convergence rate α = 2,

we have N0 = 1, which indicates that only some earlier eigenvalues can be approximated at

quadratic rate h2. However, if we relax the convergence requirement to linear rate α = 1,

we would have about 2−d/2
√
N numerical eigenvalues qualify.

2.2) Cubic element k = 4, there are about 3−d(1−α/4)N1−α/4 reliable numerical eigenval-

ues converging at least with rate hα. If we demand optimal convergence rate α = 4, we have

N0 = 1, which indicates that only some earlier eigenvalues can be approximated at quatic

rate h4. However, if we demand only second order convergence with α = 2, we would have
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about 3−d/2
√
N numerical eigenvalues qualify. If we further relax the convergence rate to

linear, there will be 3−3d/4N3/4 qualified numerical eigenvalues.

4. Further Examples and Discussions

In this section, we present some further examples to illustrate our general theory. We

apply both linear and bi-linear elements (k = 2) to the Laplacian (m = 1) eigenvalue

problem (2.1) when Ω is the unit square (d = 2).

2.1. Linear element on regular triangulation with (n − 1)2 interior nodes. The resulting

linear algebraic generalized eigenvalue problem is:

1

h2


A −I
−I A −I

. . .
. . .

. . .

−I A

 ~U =
λ

12


H D
D′ H D

. . .
. . .

. . .

D′ H

 ~U, (4.1)

where I is the (n− 1)× (n− 1) identity matrix.

A =


4 −1

−1 4
. . .

. . .
. . . −1
−1 4

 , H =


6 1

1 6
. . .

. . .
. . . 1
1 6

 , D =


1
1 1

. . .
. . .

1 1

 .

By mass lumping, the mass matrix becomes an identity matrix, which is equivalent to the

counterpart 5-point finite difference scheme. The eigenvalues of A are 4−2 cos θj . Therefore,

numerical eigenvalues with mass lumping are

λh,lj,k =
1

h2
(4− 2 cos θj − 2 cos θk). (4.2)

Recall the one dimensional linear element with mass lumping case (1.3), we see that

λh,lj,k = λh,lj + λh,lk .

Therefore, we have the same conclusion as under one dimension for the two extremal cases

λh,ln−1,n−1 and λh,ln/2,n/2; in addition, we have, for k, j << n,

λh,lj,k = (jπ)2 + (kπ)2 − h2

12
[(jπ)4 + (kπ)4] +

h4

360
[(jπ)6 + (kπ)6] + · · · (4.3)

Here the total degree of freedom N = (n− 1)2, in which case
√
N ≈ n.

In the two dimensional setting, we order eigenvalues according to their magnitudes.

There are three natural ways to do that.

1) Triangular ordering: for each level ` = 1, 2, . . ., we choose λ1,`, λ`,1, λ2,`−1, λ`−1,2, . . .,

the last one is λ`/2,`/2 when ` is even, and the last two are λ(`−1)/2,(`+1)/2, λ(`+1)/2,(`−1)/2
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when ` is odd. There are (`+ 1)(`+ 2)/2 eigenvalues in the triangle, and the two with the

largest magnitude are λ1,` and λ`,1.

2) Square ordering: for each level, we choose λ1,`, λ2,`, . . . , λ`,`, λ`,`−1, . . . , λ`,2, λ`,1. The

one with the largest magnitude is λ`,` and there are `2 eigenvalues in the square.

3) Circular ordering: draw quarter-circles in the first quadrant with radiuses 1 + 1, 1 +

22, 1 + 32, . . . , 1 + `2, group lattice points in each ring formed by adjacent circles. There are

about π`2/2 eigenvalues in the quarter disk. On the outer quarter circle, in addition to λ1,`

and λ`,1 (with radius 1 + `2), there might be several other eigenvalues that have the largest

magnitude, depending on how many lattice points on the circle.

Note that in the above three ordering strategies, the number of eigenvalues differ by

factors less than 2. For simplicity, we use the second strategy, square ordering, in which

case, the first O(
√
N) numerical eigenvalues are then obtained by setting ` =

√
n, and their

relative errors are less than

λ√n,
√
n − λ

h,l√
n,
√
n

λ√n,
√
n

=
h2

12

(
√
nπ)4 + (

√
nπ)4

(
√
nπ)2 + (

√
nπ)2

+O(h2) =
hπ2

12
+O(h2).

Here, we assume that n is a complete square or otherwise we can round it to its nearest

complete square without loss of its order.

Remark 2. We see that there are about O(
√
N) = O(n) = O(h−1) numerical eigenvalues

with relative errors converging linearly. This conclusion is the same as the one dimensional

case if measured by the total degrees of freedom N . Indeed, it is also true for any dimension

if linear element is used. However, if measured by the mesh size h, the conclusion would be

different for linear element, in which case there are about O(h−1/2), O(h−1), and O(h−3/2)

numerical eigenvalues, which have relative errors converging linearly for the one, two, and

three dimensional situations.

2.2. Bilinear element on n× n square partition. The resulting linear algebraic system is:

1

3h2


A −B

−B A
. . .

. . .
. . . −B
−B A

 ~U =
λ

36


4C C

C 4C
. . .

. . .
. . . C
C 4C

 ~U, (4.4)

where

A =


8 −1

−1 8
. . .

. . .
. . . −1
−1 8

 , B =


1 1

1 1
. . .

. . .
. . . 1
1 1

 ; C =


4 1

1 4
. . .

. . .
. . . 1
1 4

 .

We first consider mass lumping, which results in the identity mass matrix and therefore

is equivalent to the 9-point finite difference scheme. Note that eigenvalues of A and B are
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8− 2 cos θj and 1 + 2 cos θk, respectively. Then numerical eigenvalues for the mass lumping

scheme are

λh,lbj,k =
1

3h2
[8− 2 cos θj − 2(1 + 2 cos θj) cos θk]

=
1

3h2
[2(1− cos θj) + 2(1− cos θk) + 4(1− cos θj cos θk)]. (4.5)

When k, j << n, using

4(1− cos θj cos θk) = 2(θ2
j + θ2

k)−
1

6
(θ4
j + θ4

k)− θ2
j θ

2
k + · · ·

we obtain

λh,lbj,k = (jπ)2 + (kπ)2 − h2

12
[(jπ)4 + (kπ)4 + 4(jπ)2(kπ)2]

+
h4

120
[(jπ)6 + (kπ)6 + 10(jπ)4(kπ)2 + 10(jπ)2(kπ)4] + · · · (4.6)

Next, we consider the original bilinear case. Note that eigenvalues of the mass matrix on

the right hand side of (4.4) are

1

36
[(4 + 2 cos θj) + 2(4 + 2 cos θj) cos θk] =

1

9
(4 + 2(cos θj + cos θk) + cos θj cos θk).

Therefore, eigenvalues from the bilinear element are

λh,bj,k =
3

h2

2(1− cos θj) + 2(1− cos θk) + 4(1− cos θj cos θk)

4 + 2(cos θj + cos θk) + cos θj cos θk

=
1

h2
(θ2
j + θ2

k) +
1

12
(θ4
j + θ4

k) +
1

360
(θ6
j + θ6

k)−
17

60480
(θ8
j + θ8

k) + · · ·

= (jπ)2 + (kπ)2 +
h2

12
((jπ)4 + (kπ)4) +

h4

360
((jπ)6 + (kπ)6)

− 17h6

60480
((jπ)8 + (kπ)8) + · · · . (4.7)

Let us consider again some special cases. From (4.5), we have

λh,lbn−1,n−1 =
1

3h2
[4(1 + cos

π

n
) + 4(1− cos2 π

n
)]

=
4

3h2
(1 + cos

π

n
)(2− cos

π

n
)

=
4

3h2
(2− 1

2
(
π

n
)2 + · · · )(1 +

1

2
(
π

n
)2 + · · · )

=
4

3h2
(2 +

1

2
(
π

n
)2 + · · · ) =

8

3
n2 +

2π2

3
+O(n−2);

and from (4.7), we obtain

λh,bn−1,n−1 =
3

h2

4(1 + cos πn)(2− cos πn)

4− 4 cos πn + cos2 π
n

=
12

h2

1 + cos πn
2− cos πn

=
12

h2
(2− 1

2
(
π

n
)2 + · · · )(1 +

1

2
(
π

n
)2 + · · · )−1

=
12

h2
(2− 3

2
(
π

n
)2 + · · · ) = 24n2 − 18π2 +O(n−2).
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Comparing with the exact eigenvalue λn−1,n−1 = 2(n−1)2π2, we see that the relative errors

for bilinear element with and without lumping are of order O(1).

λh,lbn/2,n/2 =
8

3
n2, λh,bn/2,n/2 = 6n2. (λn/2,n/2 =

π2

2
n2).

Again, their relative errors are O(1).

Recall the one dimensional case, by extrapolating λhj and λh,lj , we obtain about O(N3/4)

numerical eigenvalues whose relative errors converge linearly. In the two dimensional case,

this extrapolation is done between λh,lj,k (4.3) and λh,bj,k (4.7). Indeed,

λh∗j,k =
1

2
(λh,bj,k + λh,lj,k) = (jπ)2 + (kπ)2 +

h4

360
[(jπ)6 + (kπ)6] + · · · (4.8)

Comparing with (1.4), what a match! It is straightforward to calculate

λh,∗n−1,n−1 = 16n2 − 10π2 +O(n−2), λh∗n/2,n/2 = 5n2.

Therefore,

λn−1,n−1 − λh,∗n−1,n−1

λn−1,n−1
=

2(n− 1)2π2 − (16n2 − 10π2 +O(n−2))

2(n− 1)2π2
≈ 1− 8

π2
,

λh,∗n/2,n/2 − λn/2,n/2
λn/2,n/2

=
5n2 − n2π2/2

n2π2/2
=

10

π2
− 1.

which are the same as in the one dimensional situation.

Remark 3. We see that in the two dimensional situation, linear element with mass

lumping plays the same role as in the one dimensional case; However, it is the bilinear

element (not the linear element) that plays relatively the same role as linear element for

the one-dimensional case.

5. A Comparison with the Spectral Method

In this section, we compare finite element methods with spectral methods on the most

simple setting in both one and two dimensional situations. According to Weideman-

Trefethen [10], there are about 2/π portion “trusted” eigenvalues for the polynomial spectral

method in 1-D. We understand “trusted” to mean at least O(N−1) accuracy with polyno-

mial degree N .

Example 1. Consider eigenvalue problem −u′′ = λu on [−1, 1] with u(−1) = 0 = u(1).

We divide the interval [−1, 1] into 213 = 8192 equal length subintervals and apply linear

finite element method. With the mass lumping, we obtain the central finite difference

scheme. We then apply Legendre spectral method with polynomial degree N = 8192. Note

that for the Legendre spectral method, the stiffness matrix is diagonal and the mass matrix

10



is 5-diagonal with only 3N − 2 none-zero entries, and condition number is not an issue. In

Figure 1, we depict relative errors for 8191 eigenvalues for all three methods and draw a

horizontal line y = 0.012% ≈ 1/8192 and two vertical lines x =
√
N and x = 2N/π. We see

that the error curves of finite element, finite difference methods pass through the intersection

of y = 0.012% and x =
√
N , and the error curve of the spectral method cuts the intersection

of y = 0.012% and 2N/π. This observation is inconsistent with our theoretical prediction

that there are about O(
√
N) (for N = 8192, this is about 1%) numerical eigenvalues that

have their relative errors converge linearly. Note that for h = N−1, linear convergence rate

means that the relative error is about 0.012%. Our calculation also confirms that there are

about 2/π numerical eigenvalues for which the relative error converges at rate O(N−1) for

Legendre polynomial spectral method.

Example 2. Consider the eigenvalue problem (2.1) when Ω = [−1, 1]2. We use four dif-

ferent numerical methods to solve it: 1) Divide Ω into 212×212 equal sub-squares and apply

linear finite element method; 2) Introduce mass lumping to the linear finite element method

and obtain the 9-point finite difference method; 3) use quadratic element on the 211 × 211

equal sub-squares partition; and 4) apply Legendre spectral method with polynomial degree

212 = 4096 in each direction.

All four methods have the same total degrees of freedom N = 224. Note that for the

Legendre spectral method, the stiffness matrix is again diagonal and the mass matrix is

block 5-diagonal with only (3N −2)2 none-zero entries. The condition number in 2D is also

not an issue.

In Figure 2, we draw 0.024% ≈ 1/4096 relative error regions for each of the four methods.

Inside the region, the relative error is less than 0.024%. We see that only 0.03%(≈ 1.9N−1/2)

numerical eigenvalues from linear finite element or the 9-point finite difference method qual-

ify, and about 1.15%(≈ 9.2N−1/4) numerical eigenvalues from quadratic finite element qual-

ify. The percentage of values that qualify increases to 40.58%(≈ (2/π)2) for the Legendre

spectral method.

Conclusion Remarks. From the above discussion, we see that only a small portion of

numerical eigenvalues obtained from finite element (finite difference) methods are reliable

even under the most favorable situation, i.e., eigenfunctions are sufficiently smooth and

round-off errors are taking off the picture. Although the number of reliable eigenvalues

increases with an increased computational scale N , the percentage of reliable eigenvalues

(compared with non-reliable eigenvalues) will go to zero when N goes to infinity!

Acknowledgment. The author would like to thank Professor Huiyuan Li for producing

the two graphs in the paper.
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