Skip to main content
Log in

A Fast Solver for Boundary Integral Equations of the Modified Helmholtz Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The main purpose of this paper is to develop a fast fully discrete Fourier–Galerkin method for solving the boundary integral equations reformulated from the modified Helmholtz equation with boundary conditions. We consider both the nonlinear and the Robin boundary conditions. To tackle the difficulties caused by the two types of boundary conditions, we provide an improved version of the Galerkin method based on the Fourier basis. By employing a matrix compression strategy and efficient numerical quadrature schemes for oscillatory integrals, we obtain fully discrete nonlinear or linear system. Finally, we use the multilevel augmentation method to solve the resulting systems. We point out that the proposed method enjoys an optimal convergence order and a nearly linear computational complexity. The theoretical estimates are confirmed by the performance of this method on several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlberg, J.H., Nilson, E.N., Walsh, J.L.: The Theory of Splines and Their Applications. Academic Press, New York (1967)

    MATH  Google Scholar 

  2. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  3. Atkinson, K.E., Chandler, G.: Boundary integral equation methods for solving Laplace’s equation with nonlinear boundary conditions: the smooth boundary case. Math. Comput. 55, 451–472 (1990)

    MATH  MathSciNet  Google Scholar 

  4. Bazant, M.Z., Thornton, K., Ajdari, A.: Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70, 021506 (2004)

    Article  Google Scholar 

  5. Cai, H.: A fast solver for the Hilbert-type singular integral equations based on the direct Fourier spectral method. J. Comput. Appl. Math. 250, 83–95 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cai, H., Xu, Y.: A fast Fourier–Galerkin method for solving singular boundary integral equations. SIAM J. Numer. Anal. 46, 1965–1984 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheng, H., Huang, J., Leiterman, T.: An adaptive fast solver for the modified Helmholtz equation in two dimensions. J. Comput. Phys. 211, 616–637 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheng, P., Huang, J., Wang, Z.: Mechanical quadrature methods and extrapolation for solving nonlinear boundary Helmholtz integral equations. Appl. Math. Mech. (English Ed.) 32, 1505–1514 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, X., Chen, Z., Wu, B., Xu, Y.: Fast multilevel augmentation methods for nonlinear boundary integral equation. SIAM J. Numer. Anal. 49, 2231–2255 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, X., Wang, R., Xu, Y.: Fast Fourier-Galerkin methods for nonlinear boundary integral equations. J. Sci. Comput. 56, 494–514 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, Z., Micchelli, C.A., Xu, Y.: Multiscale Methods for Fredholm Integral Equations. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  12. Chen, Z., Wu, B., Xu, Y.: Fast multilevel augmentation methods for solving Hammerstein equations. SIAM. J. Numer. Anal. 47, 2321–2346 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. de Boor, C., Höllig, K., Sabin, M.: High accuracy geometric Hermite interpolation. Comput. Aided Geom. Des. 4, 269–278 (1988)

    Article  Google Scholar 

  14. Degen, W.L.F.: Best approximation of parametric curves by splines. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods in Computer Aided Geometric Design II, pp. 171–184. Academic Press, Waltham (1992)

    Google Scholar 

  15. Eisele, E.F.: Chebychev approximation of plane curves by splines. J. Approx. Theory 76, 133–148 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide, 5th edn. Academic Press, San Diego (2002)

    Google Scholar 

  17. Floater, M.S.: Chordal cubic spline interpolation is fourth order accurate. IMA J. Numer. Anal. 26, 25–33 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Floater, M.S., Surazhsky, T.: Parameterization for curve interpolation. In: Jetter, K., et al. (eds.) Topics in Multivariate Approximation and Interpolation, pp. 39–54. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  19. Foley, T.A., Nielson, G.M.: Knot selection for parametric spline interpolation. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods in Computer Aided Geometric Design, pp. 261–272. Academic Press, Waltham (1989)

    Google Scholar 

  20. Iserles, A.: On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. IMA J. Numer. Anal. 24, 365–391 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Iserles, A.: On the numerical quadrature of highly-oscillating integrals II: irregular oscillators. IMA J. Numer. Anal. 25, 25–44 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jaklič, G., Kozak, J., Krajnc, M., Žagar, E.: On geometric interpolation by plannar parametric polynomial curves. Math. Comput. 76, 1981–1993 (2007)

    Article  MATH  Google Scholar 

  23. Jiang, Y., Xu, Y.: Fast discrete algorithms for sparse Fourier expansions of high dimensional functions. J. Complex. 26, 51–81 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jiang, Y., Xu, Y.: Fast Fourier-Galerkin methods for solving singular boundary integral equations: numerical integration and precondition. J. Comput. Appl. Math. 234, 2792–2807 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kress, R.: Linear Integral Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  26. Kropinski, M.C., Quaife, B.: Fast integral equation methods for the modified Helmholtz equation. J. Comput. Phys. 230, 425–434 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kropinski, M.C., Quaife, B.: Fast integral equation methods for Rothe’s method applied to the isotropic heat equation. Comput. Math. Appl. 61, 2436–2446 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. Comput. Aided Des. 21, 363–370 (1989)

    Article  MATH  Google Scholar 

  29. Levin, D.: Procedures for computing one-and-two dimensional integrals of functions with rapid irregular oscillations. Math. Comput. 38, 531–538 (1982)

    Article  MATH  Google Scholar 

  30. Lin, H., Xu, Z., Tang, H., Cai, W.: Image approximations to electrostatic potentials in layered electrolytes/dielectrics and an ion-channel model. J. Sci. Comput. 53, 249–267 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lu, B.Z., Zhou, Y.C., Holst, M.J., McCammon, J.A.: Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications. Commun. Comput. Phys. 3, 973–1009 (2008)

    MATH  Google Scholar 

  32. Mørken, K.: On geometric interpolation of parametric surfaces. Comput. Aided Geom. Des. 22, 838–848 (2005)

    Article  Google Scholar 

  33. Mørken, K., Scherer, K.: A general framework for high-accuracy parametric interpolation. Math. Comput. 66, 237–260 (1997)

    Article  Google Scholar 

  34. Ruotsalainen, K., Wendland, W.: On the boundary element method for some nonlinear boundary value problems. Numer. Math. 53, 299–314 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schaback, R.: Planar curve interpolation by piecewise conics of arbitrary type. Constr. Approx. 9, 373–389 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  36. Steinbach, O., Tchoualag, L.: Fast Fourier transform for efficient evaluation of Newton potential in BEM. Appl. Numer. Math. 81, 1–14 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  37. Smitheman, S.A., Spence, E.A., Fokas, A.S.: A spectral collocation method for the Laplace and modified Helmholtz equations in a convex polygon. IMA J. Numer. Anal. 30, 1184–1205 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Vainikko, G.M.: Perturbed Galerkin method and general theory of approximate methods for nonlinear equations. Zh. Vychisl. Mat. Fiz. 7, 723–751 (1967)

    MathSciNet  Google Scholar 

  39. Vainikko, G.M.: Galerkin’s perturbation method and the general theory of approximate methods (English translation). USSR Comput. Math. Mathods Phys. 7, 1–41 (1967)

    Article  Google Scholar 

  40. Xu, Z., Liang, Y., Xing, X.: Mellin transform and image charge method for dielectric sphere in an electrolyte. SIAM J. Appl. Math. 73, 1396–1415 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  41. Yan, Y., Sloan, I.H.: On integral equations of the first kind with logarithmic kernels. J. Integral Equ. Appl. 1, 549–579 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is partially supported by Guangdong Provincial Government of China through the “Computational Science Innovative Research Team” program, by the Natural Science Foundation of China under Grants 11401207, 11301208, 11271370, by Hunan Provincial Natural Science Foundation of China under Grant 2015JJ6069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangling Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Chen, X. A Fast Solver for Boundary Integral Equations of the Modified Helmholtz Equation. J Sci Comput 65, 553–575 (2015). https://doi.org/10.1007/s10915-014-9975-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9975-1

Keywords

Mathematics Subject Classification

Navigation