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A PRACTICAL FACTORIZATION OF A SCHUR COMPLEMENT
FOR PDE-CONSTRAINED DISTRIBUTED OPTIMAL CONTROL∗

YOUNGSOO CHOI† , CHARBEL FARHAT‡ , WALTER MURRAY§ , AND MICHAEL

SAUNDERS¶

Abstract. A distributed optimal control problem with the constraint of a linear elliptic partial
differential equation is considered. A necessary optimality condition for this problem forms a saddle
point system, the efficient and accurate solution of which is crucial. A new factorization of the
Schur complement for such a system is proposed and its characteristics discussed. The factorization
introduces two complex factors that are complex conjugate to each other. The proposed solution
methodology involves the application of a parallel linear domain decomposition solver—FETI-DPH—
for the solution of the subproblems with the complex factors. Numerical properties of FETI-DPH
in this context are demonstrated, including numerical and parallel scalability and regularization
dependence. The new factorization can be used to solve Schur complement systems arising in both
range-space and full-space formulations. In both cases, numerical results indicate that the complex
factorization is promising.

Key words. PDE-constrained optimization, Schur complement, Poisson operator, FETI, range-
space method, full-space method, distributed optimal control
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1. Introduction. Numerical methods for solving partial differential equations
(PDEs) have broad applications in the simulation of complicated physical models,
the prediction of their response, and design. An important and practical subset
of these applications—particularly for design—involves the use of a mathematical
optimization technique in which the PDE takes the role of a constraint equation. Two
methodologies for PDE-constrained optimization problems are SAND (simultaneous
analysis and design) and NAND (nested analysis and design) [3]. NAND uses PDEs
to express decision variables as an implicit function of state variables and does not
include state variables as optimization variables. Thus, the size of the optimization
problem is not typically large. On the other hand, the SAND approach takes both
decision variables and state variables as optimization variables and considers PDEs to
be equality constraints. Consequently, the size of the system in the SAND approach
is generally much larger. The NAND approach has traditionally been the method of
choice for physics-based applications not only because SAND requires the solution of
a large-scale system of equations but also because NAND conveniently permits the
direct use of existing solvers for both optimization and PDE simulation as a black
box. However, NAND suffers from the fact that many PDE simulations are required
for function evaluations—typically the most expensive part of this approach. Due to
the continuous increase in computational power (e.g., speed of processing, capacity
of memory, high performance computing) accompanied by the development of robust
and versatile numerical algorithms (e.g., parallel algorithms), the SAND approach
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has received increasing attention from researchers in recent years [4, 5, 7, 31], and the
present study continues this line of research.

The SAND approach to PDE-constrained optimization takes the form

minimize
y,u

F (y, u)

subject to C(y, u) = 0,
(1.1)

where C(y, u) = 0 is the time-independent PDE constraint, y is the vector of state
variables, and u is the vector of decision variables. State variables by definition are the
unknown variables in the forward PDE problem. For example, state variables comprise
temperature in heat conduction problems and displacements in elastostatics. For the
class of PDE-constrained optimization known as optimal control the decision variables
u are referred to as control variables, whereas for optimal design or shape optimization

problems the decision variables u are called design variables. The decision variables
may also be a set of parameters describing the material properties or the system of
dynamics for some inverse problems. All three types of PDE-constrained optimization
problems share a similar structure of their linear or linearized system of equations
known as a KKT system, after the Karush-Kuhn-Tucker optimality conditions, or a
saddle point system.

In what follows, a robust and versatile numerical method for solving a distributed
optimal control problem is considered. In particular, heat conduction and elastostatic
PDE-constrained problems are studied, although the method developed here can also
be applied or extended easily to other types of PDE-constrained optimization prob-
lems. From various possible objective functions that may be used to formulate a
distributed PDE-constrained optimal control problem, the one considered is that in
which a target state is assumed to be given. Thus, the aim is to find a state that
is close to the prescribed target and a control that realizes that particular state.
For example, the static thermal conduction optimal control problem with a target
temperature distribution ȳ is formulated as

minimize
y,u

F (y, u) :=
1

2

∫

Ω

(y − ȳ)2dx+
φ

2

∫

Ω

u2dx

subject to −∇2y = u on Ω

y = yc on Γg.

(1.2)

The solution of this problem is considered in Section 6.1. Variables y and u are the
temperature state and heat source control, respectively, while yc is the prescribed
boundary conditions and φ is a regularization parameter. The domain of interest is
denoted as Ω and a Dirichlet boundary condition is imposed on the boundary Γg.
Note that a unit conductivity is assumed.

Two alternative approaches to PDE-constrained optimization problems such as
(1.2) are optimize-and-discretize and discretize-and-optimize. The latter approach,
in which one first discretizes both the objective function and constraints and then
obtains the discretized optimality condition, is typically used for PDE-constrained
optimal control [5, 9, 30, 29, 32, 35, 11] and is followed here.

Solving the saddle point system representing the discretized optimality condition
efficiently is crucial to the competitiveness of the SAND approach, in comparison with
NAND. There are two methodologies for solving a saddle point system.

• In reduced-space methods, one attempts to reduce the size of a saddle point
system by eliminating some variables and solving a smaller system [37, 38,
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35, 4]. The range-space method and the null-space method are two popular
reduced-space methods. In the range-space method, one solves for the dual
variables first using the corresponding Schur complement and subsequently
updates the primal variables, whereas the null-space method subdivides the
variables algebraically into null-space variables and range-space variables us-
ing null-space and range-space bases of the constraint Jacobian.

• In full-space methods, one solves for the primal and dual variables simulta-
neously. The resultant system of equations becomes a sparse saddle point
system and iterative methods are the only practical choice for large prob-
lems. Various efficient preconditioners for saddle point systems have been
developed [27, 2, 22, 16, 32, 30, 10, 9, 23, 5, 36]. However, there is still mo-
tivation for further research in this area. For example, most preconditioners
are not robust when φ is small. Recently, Pearson and Wathen have devel-
oped a new approximation of the Schur complement and used it to facilitate
a regularization-robust preconditioner for a particular distributed optimal
control problem [30]. Pearson et al. have further extended the usage of the
aforementioned approximation to a broader range of optimal control problems
[29].

The factorization of the Schur complement presented in this paper has a similar
form to Pearson and Wathen’s approximation, and furthermore is applied to the same
particular distributed optimal control problem [30]. However the approach taken here
differs from that of Pearson and Wathen in two ways. First and foremost, because
the factorization is exact by its nature, the range-space method can be adopted and
one efficient solve with the Schur complement results in a solution to the distributed
optimal control problem. Second, a scalable domain decomposition based parallel
linear solver FETI-DPH [13] is used to solve each of the subproblems arising in the
application of the proposed factorization. In contrast, Pearson and Wathen suggest a
multigrid method.

The outline of the paper is as follows: Section 2 describes discretization of the
distributed optimal control problem (1.2) and the corresponding optimality condition,
which is a saddle point system. Section 3 outlines two methods for solving the saddle
point system: the range-space method and the full-space method. Additionally, this
section reviews existing preconditioners for the full-space method related to the Schur
complement in the range-space method. Section 4 introduces a practical factorization
of the Schur complement and explains how it can be used in both the range-space
method and the full-space method. Section 5 describes the Finite Element Tearing
and Interconnecting (FETI) method and its so-called dual-primal variants, FETI-DP
and FETI-DPH. Section 6 presents numerical results that illustrate the scalability and
efficiency of the method applied to a selection of distributed optimal control problems.

2. Distributed control problems. In this section, the finite element discretiza-
tion of a distributed optimal control problem is introduced and the corresponding
optimality condition is presented. For brevity, we choose to show the discretization of
a distributed optimal control problem with a constraint of the Poisson equation (i.e.,
Eq. (1.2)). However, distributed optimal control problems with other types of PDE
constraints (e.g., linear elasticity) will have the same discretized formulation. The
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finite element discretization of (1.2) gives

minimize
y,u

F (y,u) :=
1

2
‖y− ȳ‖2V +

φ

2
‖u‖2V

subject to Ky +Kcyc = Vu,

(2.1)

where K, V ∈ R
n×n, and Kc ∈ R

n×m are the stiffness matrix, volume matrix, and
constrained stiffness matrix, respectively. Vector valued quantities ȳ, y, u ∈ R

n,
and yc ∈ R

m are the discretized versions of the target state, state, control, and
prescribed boundary conditions, respectively. All the discrete variables are denoted
with bold fonts for the remainder of the paper. The dimensions n and m are the
number of unconstrained degrees of freedom (i.e., the size of y) and the number of
constrained degrees of freedom, respectively. It is assumed that both K and V are
symmetric positive definite (SPD) matrices, which is the case for the thermal problem

above. The energy norm ‖ · ‖V is defined as ‖q‖V =
√

qTVq. The details of the
finite element discretization procedure can be found in [7]. Problem (2.1) is a convex
quadratic program and its solution is a saddle point of the Lagrangian,

L(y,u,λ) =
1

2
‖y − ȳ‖2V +

φ

2
‖u‖2V + λ

T (Ky +Kcyc −Vu). (2.2)

A saddle point (y∗,u∗,λ∗) must satisfy the following optimality condition:





V 0 K
0 φV −V
K −V 0









y∗

u∗

λ
∗



 =





Vȳ
0

−Kcyc



 . (2.3)

This equation is of the form Ax = b, where A is a symmetric indefinite matrix.
Section 3 explains two ways of solving the saddle point system in (2.3): the range-
space method and full-space method.

3. Range-space and full-space methods.

3.1. Range-space method. The range-space method was introduced for large-
scale inequality-constrained convex quadratic programming problems with small ac-
tive sets in order to overcome the disadvantage of the null-space method: the in-
creasingly high dimension of the null space basis as a solution is approached [19, 20].
For equality-constrained convex quadratic programming, the range-space method is
equivalent to the Schur complement method [37] where the corresponding dual prob-
lem is solved first. The range-space method is a reduced-space method in a sense that
the size of the saddle point system in (2.3) is reduced by eliminating y∗ and u∗ and
solving for λ∗ first. The dual variable λ

∗ is obtained by solving

Sλ∗ = Kcyc +Kȳ, (3.1)

where S = KV−1K + 1
φ
V is known as the negative Schur complement on the dual

variables. Then, y∗ and u∗ are computed from

y∗ = ȳ −V−1Kλ
∗ and u∗ =

1

φ
λ
∗. (3.2)

The most expensive and crucial step in the range-space method is to solve with S in
(3.1). The eigenvalues (and consequently, the condition number) of S depend on those
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of K and V and the value of φ [37, 7]. For small values of φ, the condition number
of S is affected most by the eigenvalues of V, whose condition number is bounded
above by a constant, C, for Pq or Qq (the qth order triangular or quadrilateral finite
elements in 2D and tetrahedral or brick elements in 3D) if a set of grids is quasi-
uniform (see Eq. (1.116) and Eq. (1.117) in [12]). The constant C depends on the
order of approximation q but not on the mesh size h. Thus for small values of φ, even
if the grid is refined or the problem size is increased, the condition number of S is
bounded. For large values of φ, the condition number of S (denoted by κ(S)) depends
on κ(KV−1K), which is proportional to κ(K)2. For a second-order elliptic operator,
one can prove that κ(K) < ch−2 if Pq or Qq is used on a quasi-uniform discretization
of a domain (see Eq. (1.119) and Eq. (1.121) in [12]). For a higher-order elliptic
operator, the dependence on h of κ(K) increases (e.g., the shell or beam elements).
This is unfortunate because κ(K) is likely to increase as the mesh size h decreases or
the problem size increases. One remedy is to apply iterative refinement with a high
precision data type. If the solution is inaccurate even after iterative refinement due
to the ill-conditioning of S, an alternative way of solving (2.3) that avoids an exact
solve with S is to use the full-space method, which is explained in the next section.

An additional challenge in applying the range-space method for solving (2.3)
resides in solving with S itself. Because S is a sum of two matrices (KV−1K and
1
φ
V), the first of which is a product requiring two matrix-matrix multiplications to

evaluate, it is not straightforward to come up with an efficient way of solving with
S. In Section 4, a practical factorization of S is introduced and the factorization
does not require matrix-matrix products. The factorization introduced in Section 4
introduces complex symmetric matrices (not Hermitian matrices) in its factors. A
list of efficient solvers for complex symmetric matrices includes CG-type methods
[17], CS-MINRES-QLP [6], GMRES [34, 8], FETI-DPH [13], and multi-grid methods
[24, 33]. FETI-DPH is explained in Section 5 and used in numerical experiments in
Section 6.

3.2. Full-space Method. The full-space method attempts to solve for all the
variables of the saddle point system in (2.3) simultaneously. As the discretization is
refined, the size of the system becomes large and an iterative method is often the
only available method. Because A is a symmetric indefinite matrix, any Krylov it-
erative method suitable for this class of matrices, such as MINRES [28], SYMMLQ
[28], SQMR [18], and GMRES, can be used. For successful convergence of the iter-
ative method, one is often required to apply a good preconditioner. Even without
any preconditioner, the saddle point system itself tends to be better conditioned for
moderately large values of φ than the Schur complement in the range-space method
[37]. If a good preconditioner is used, the full-space method is likely to have a better
scalability than the range-space method, meaning that computational cost does not
grow at an exponential rate as the problem size increases. Thus, many preconditioners
have been developed recently. Here we focus on a Schur complement-based precon-
ditioner because the primary interest is to discuss the usage of a Schur complement
factorization that will be introduced in Section 4. Murphy, et al. [27] have shown that
if the following block diagonal preconditioner is used, then the preconditioned system
has at most three nonzero distinct eigenvalues:

Pmgw =





V 0 0
0 φV 0
0 0 S



 , (3.3)
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where S is the negative Schur complement defined in (3.1). This implies that the
maximum number of iterations required for convergence in a Krylov iterative method
is three if Pmgw is used as a preconditioner. However, applying this preconditioner has
previously been considered impractical because it requires solving with S in order to
apply Pmgw . Even if it were practical to solve with S efficiently and accurately, then
the preferred approach would typically be to use the range-space method rather than
to apply Pmgw in the full-space method because the range-space method requires only
one solve with S, while the full space method with Pmgw as a preconditioner is likely
to require more than one solve with S. There has been some research done on finding
a good approximation of the Schur complement for use in a Schur complement-based
preconditioner (e.g., Pmgw) [32, 30, 29]. Particularly, Pearson and Wathen [30] have
developed the following approximation, which is regularization-robust:

Sp = (K+
1√
φ
V)V−1(K+

1√
φ
V)

= S+
2√
φ
K,

(3.4)

and proved that the eigenvalues of S−1
p S are between 1

2
and 1 regardless of the mesh

size h and φ. This implies theoretically that a Krylov iterative method must con-
verge in O(1) iterations regardless of h and φ. They have used an algebraic multi-

grid method to solve with the factor
(

K+ 1√
φ
V
)

in their numerical examples and

demonstrated that the number of iterations required for convergence is indeed O(1).
However, in the problems they solve, the condition number of the Schur complement
is small enough so that the approximation to the Schur complement behaves well.
The factorization introduced in Section 4 has a similar form to (3.4). However, it is
an exact representation of S and therefore enables the application of the range-space
method.

4. A “practical” factorization of the Schur complement. The Schur com-
plement S in (3.1) can be factored into the following form:

Sc = (K+
1

i
√
φ
V)V−1(K− 1

i
√
φ
V), (4.1)

where i =
√
−1. The form of this factorization is similar to Sp in (3.4) in the sense

that the first and third factors are some linear combinations of K and V, and the
middle factor is V−1. This suggests that the same methods for solving with the
factors in Sp may also be used to solve with factors in Sc. However, there are some
important differences between Sp and Sc. The first and third factors of Sp are the
same, but the corresponding factors of Sc are not. Consequently, if direct solvers were
to be used for each factor, then only one factorization would be required for Sp, while
two factorizations of two different systems would be required for Sc. Additionally, Sc

introduces complex numbers, but all the elements in Sp are real. Thus, one solve with
Sc requires four times more storage and floating point operations than one solve with
Sp. In spite of the disadvantages of applying Sc, it is an exact representation of S, and
this permits use of the range-space method where only one solve with Sc is sufficient
to obtain a solution to (2.1). On the other hand, many solves with Sp are required
because Sp is an approximation to S, so it can only be used as a preconditioner.
This discussion leads to the following two extreme cases when dealing with the Schur
complement:
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• If a direct method is the preferred choice for solving the Schur complement
(i.e., a factorization of a given system is required), it would be advantageous to
apply the direct method to Sp assuming that the dominating computational
cost occurs in factorization of the system.

• If an iterative method is the only option and the range-space method is ap-
plicable, then it would be preferable to apply the iterative method to Sc.

Between these two extreme cases, a choice must be made depending on the character-
istics of the problem and a numerical solver. For example, if the domain of a problem
is complex, then the computational overhead incurred by applying Sc rather than Sp

will be substantially diminished since in this case the factors of both Sc and Sp will
be complex. Such problems include any frequency domain analyses with damping in
structural or acoustic problems. On the other hand, if a problem requires many solves
with a Schur complement and with multiple right-hand sides and is small enough to
permit a direct solver to be used for the factors of S, applying Sp is favorable because
direct methods are more efficient than iterative methods in general for multiple right-
hand sides. If a domain decomposition method—in which both direct and iterative
methods are used—is chosen, then one needs to examine the costs of each component
of the computation (e.g., data structure, building and storing the operator, and solv-
ing with the operator). In Section 6, numerical results for solving with Sc are shown
using the domain decomposition solver FETI-DPH [13].

5. FETI. In order to be self-contained, the FETI method [15] and two of its
variants (FETI-DP [14] and FETI-DPH [13]) are explained in this section. For a
more detailed description, see [15, 14, 13, 1]. The FETI method was developed in
order to solve, in parallel, the following linear system of equations arising from the
finite element discretization of a linear elasticity PDE:

Ky = f , (5.1)

where K is the stiffness matrix (or a linear combination of the stiffness matrix and
mass matrix), y is the vector of unknown displacements, and f is an external force
term. Solving (5.1) is equivalent to minimizing a quadratic function:

minimize
y

1

2
yTKy − yT f . (5.2)

The objective function in (5.2) often represents a physical quantity (e.g., energy in
linear elasticity). In domain decomposition methods, the spatial domain Ω is divided
into Ns either overlapping or non-overlapping subdomains. The FETI method divides
Ω into Ns non-overlapping subdomains as illustrated in Figure 5.1 and minimizes a
local function in each subdomain (i.e., minimize ysTKsys − ysT fs in Ωs where the
superscript “s” designate the restrictions to the specific subdomain). In order to
be equivalent to (5.2), the following additional continuity condition on ys between
interfaces must be imposed:

Ns
∑

s=1

Bsys = 0, (5.3)

where Bs is a signed Boolean matrix. Hence one can write the following constrained
quadratic programming equivalent to (5.2):

minimize
ys;s=1,...,Ns

∑Ns

s=1

(

1
2
ysTKsys − ysT fs

)

subject to
∑Ns

s=1 B
sys = 0.

(5.4)
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Fig. 5.1. Illustration of 4 non-overlapping subdomains. The sample corner nodes are denoted
by C. FETI-DP enforces continuity on these corner nodes.

The Lagrangian for (5.4) is

L(ys,λ; s = 1, . . . , Ns) =

Ns
∑

s=1

(

1

2
ysTKsys − ysT fs

)

+ λ
T

Ns
∑

s=1

Bsys. (5.5)

For simplicity of notation, we will omit the writing of s = 1, . . . , Ns. The variable
ys either means an individual subvector on Ωs or a set of subvectors over all the
subdomains. Because (5.4) is convex and only linear equality constraints are present,
Slater’s condition holds. Therefore strong duality also holds. Thus, an optimal solu-
tion ys∗ to (5.4) can be obtained from a saddle point (ys∗,λ∗) to (5.5), that is,

sup
λ

inf
ys

L(ys,λ) = L(ys∗,λ∗) = inf
ys

sup
λ

L(ys,λ). (5.6)

Statement (5.6) says that one can find an optimal solution ys∗ in two ways. The
first way is to minimize L(ys,λ) with respect to ys, then maximize the resultant with
respect to λ. The second way is to maximize L(ys,λ) with respect to λ, then minimize
the resultant with respect to ys. The FETI method takes the first approach where
the Lagrange dual function g(λ) = infys L(ys,λ) is obtained and then maximized
in order to obtain the Lagrange multipliers first. This approach is attractive if the
number of constraints (i.e., interface continuity condition) is small, which is expected
to be the case in general.

For a fixed λ, L(ys,λ) is separable in ys (i.e.,
(

1
2
ysTKsys − ysT fs + λ

TBsys
)

on Ωs). Thus, the Lagrange dual function can be obtained by solvingKsys = fs−Bs
λ

on each subdomain Ωs. In the case of K being a stiffness matrix as in (5.1), Ks is
symmetric positive definite or semidefinite. If Ks is positive semidefinite, then it is
necessary to explicitly ensure that Ksys = fs − Bs

λ is compatible (i.e., RsT (fs −
BsT

λ) = 0 where the columns of Rs span the left null space of Ks). Otherwise, the

minimum of
(

1
2
ysTKsys − ysT fs + λ

TBsys
)

in terms of ys becomes −∞ and the

objective value of primal problem (5.4) is also −∞ by strong duality. However, this
is not a physical solution. Thus, we restrict ourselves to the case when g(λ) > −∞.



A PRACTICAL FACTORIZATION OF THE SCHUR COMPLEMENT 9

Finally, the Lagrange dual function g(λ) = infys L(ys,λ) is defined as

g(λ) =

{

− 1
2
λ
TFλ+ dT

λ− c if RsT (fs −BsT
λ) = 0 for ∀s,

−∞ otherwise,
(5.7)

where

F =

Ns
∑

s=1

BsKs+BsT , d =

Ns
∑

s=1

BsKs+fs, c =
1

2

Ns
∑

s=1

fsTKs+fs, (5.8)

and Ks+ is a pseudo-inverse of Ks. This defines the following dual problem to (5.4):

maximize
λ

− 1
2
λ
TFλ+ dT

λ

subject to RsT (fs −BsT
λ) = 0 for ∀s.

(5.9)

The FETI method solves (5.9) with a Preconditioned Conjugate Projected Gradient
(PCPG) algorithm. The FETI formulation above is suitable for parallel processing.
Any subdomain level computations (e.g., factorization or computation with Ks and
fs) can be assigned to an individual process. The size of λ is the total number of
degrees of freedom restricted to the interfaces between subdomains. Within PCPG,
λ is projected onto the domain of feasibility, which in turn reduces the effective
dimension of the problem. Indeed the FETI method equipped with the Dirichlet
preconditioner is proven numerically scalable with respect to both problem size and
number of subdomains. The Dirichlet preconditioner is defined as

P−1 = W

Ns
∑

s=1

Bs

[

0 0
0 Ss

bb

]

BsTW, (5.10)

where

W =

(

Ns
∑

s=1

BsBsT

)+

, Ss
bb = Ks

bb −Ks
ib
TKs

ii
−1Ks

ib, (5.11)

and the subscript i and b denote subdomain internal degrees of freedom and interface
degrees of freedom, respectively. If it is applied in the conjugate gradient algorithm
with the projected gradient [21] to second-order elliptic problems, the condition num-
ber κ of the interface problem (5.9) is approximately [26]

κ = O(1 + logm(H/h)), m ≤ 3. (5.12)

However, the first-generation FETI method is not numerically scalable for fourth-
order plate and shell problems. This leads to FETI-DP. FETI-DP is one variant
considered to be the third-generation FETI method. FETI-DP enforces continuity at
some interface corner nodes at each iteration (see Figure 5.1). An extra coarse problem
needs to be solved [14] and in each subdomain the remaining subdomain stiffness
matrix Ks

rr (i.e., that excluding the degrees of freedom in the corner nodes at which
the continuity is enforced) becomes positive definite. Consequently, the corresponding
dual interface problem becomes an unconstrained QP. This treatment helps to achieve
numerical scalability for fourth-order elliptic problems. The continuity constraints
can be augmented by additional constraints that are enforced exactly throughout the
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iterations in FETI-DP in order to accelerate the convergence. This augmentation
procedure results in the augmented coarse problem in FETI-DP [25]. A standard
augmentation procedure uses the edge-based rigid body modes (rotational and/or
translational) [13]. The positive definiteness of Ks

rr is not guaranteed when K in
(5.1) is different from the stiffness matrix. For example, for a Helmholtz problem or
frequency response elastodynamic problem, K in (5.1) becomes

Z ≡ K− k2M+ iC, (5.13)

where C is a symmetric matrix that arises from the discretization of an absorbing
boundary condition, and k > 0 is a frequency (or a wave number for acoustic scattering
problems). In this case, depending on the value of k, Z may become indefinite. The
same difficulty is encountered when solving with complex factors in (4.1). In order to
resolve this difficulty, two special treatments were required.

• The first treatment is required to deal with indefinite matrices. A solver that
is suitable for indefinite matrices must be applied. Such an iterative solver
includes GMRES [34] for a general square matrix and MINRES [28] for a
symmetric indefinite matrix. FETI-DPH (‘H’ stands for Helmholtz) [13] uses
GMRES to deal with indefiniteness.

• The second treatment is required for improved convergence when the wave
number of frequency is large. A particular augmentation used in FETI-DPH
that accelerates convergence for the Helmholtz or frequency response elasto-
dynamic problem is the free-space solutions of the corresponding equations,
which are plane waves.

Note that the complex factors in Section 4.1 are similar to (5.13), but not identical,
and not surprisingly the plane wave augmentation was found to not provide the same
beneficial effects as in the Helmholtz problem. Thus, the edge-based rigid body modes
(both rotational and translational) augmentation is applied in the next section for two
numerical examples. Strictly speaking, although FETI-DPH normally refers to the
variant of FETI-DP that uses both GMRES and plane wave augmentation, in what
follows, FETI-DPH refers to a FETI-DP solver incorporating GMRES and edge-based
rigid body modes.

6. Numerical Results. Two pedagogical examples are considered: linear static
heat control of a 2D square plate and structure control of a 3D solid cantilever. The
heat control problem in Section 6.1 is taken identical to the thermal problem solved
in the paper by Rees et al. [32]. The Schur complement that arises in this thermal
problem is sufficiently well-conditioned for the range of φ values and mesh size h
considered here for the range-space method to be applicable and therefore it is the
only method used. The cantilever control problem in Section 6.2 is very flexible
with material properties of rubber. For a relatively large φ value, the range-space
method fails to converge to an accurate solution. Thus, the range-space method is
used for small values of φ only, and the full-space method is used for large values
of φ. In the case of the full-space method, both the approximate Schur complement
proposed by Pearson and Wathen [30] and the complex factorization introduced in
this paper are used in a Schur-complement based preconditioner and compared in
terms of computational time and iteration counts.

It is well established that augmentation is a beneficial feature that improves the
performance of FETI. However, the optimality of the augmentation’s performance
depends on the nature of the problem. Because neither the FETI solver nor any of
its variants has ever been applied to a system of the form K± 1

i
√
φ
V, the numerical
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Fig. 6.1. Target temperature defined as in (6.2).

performance of FETI-DPH with and without augmentation is compared in this sec-
tion. All the simulations were run on a heterogeneous Linux cluster with 2.6 GHz
hexa-core Westmere processors (32 blades, 2 processors per blade, QDR Infiniband
interconnect, 24GB/blade) and 2.6 GHz octa-core Sandybridge processors (4 blades,
2 processors per blade, FDR Infiniband interconnect, 256 GB/node).

6.1. Thermal problem. A linear static heat control problem is solved. This
example is identical to example 5.1 in [32] by Rees et al. The same objective function
and PDE constraints are used as in (1.2), whose continuous formulation is reproduced
here for better access:

minimize
y,u

F (y, u) :=
1

2

∫

Ω

(y − ȳ)2dx+
φ

2

∫

Ω

u2dx

subject to −∇2y = u on Ω

y = yc on Γg.

(6.1)

The domain Ω is [0, 1]2 ⊂ R
2, which is a unit square plate, whose heat conductivity

is unity. The target temperature ȳ is defined as

ȳ =

{

(2x1 − 1)2(2x2 − 1)2 if (x1, x2) ∈ [0, 1
2
]2,

0 otherwise,
(6.2)

which is illustrated in Figure 6.1. The boundary condition yc is defined as

yc = ȳ on Γg = ∂Ω = {(x1, x2) | x1 ∈ {0, 1}, x2 ∈ {0, 1}}. (6.3)

The optimal control problem (6.1) tries to find a temperature y that is close to the
target temperature ȳ by controlling heat u. How close y can be to ȳ is determined
by the parameter φ. As φ decreases, y is expected to approach ȳ, but ‖u‖ is also
expected to increase. This makes sense because the objective function value is not
sensitive to the second term if the parameter φ is small and the first term dominates
the objective function value. The results shown in Figure 6.2 confirm the validity
of these expectations. For this particular example, according to Figure 6.2(a), one
needs φ less than 2 × 10−6 in order to match the target temperature to within 1%.
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(a) (b)

Fig. 6.2. (a) Graph of φ vs relative difference between temperature solution and target temper-
ature. (b) Graph of φ vs norm of control solution.

(a) φ = 2× 10−2 (b) φ = 2× 10−4 (c) φ = 2× 10−5

Fig. 6.3. Temperature (the upper three figures) and heat distribution solutions (the lower three
figures) for various φ values.

According to Figure 6.2(b), however, one needs to set φ greater than 2×10−4 in order
for the norm of control solution not to exceed 100.

The same effects can be demonstrated visually in Figure 6.3. Temperature and
heat distributions for various φ values are shown in Figures 6.3(a)-(c). Note that for
φ = 0.02, the heat is almost zero everywhere and the corresponding temperature dis-
tribution (induced mainly by the boundary condition yc) is slightly different from the
target temperature (i.e., Figure 6.1). The target temperature can be matched more
precisely if a smaller φ is used. Figures 6.3(b) and (c) show temperature distributions
that are closer to the target temperature. They are produced by using smaller φ val-
ues (i.e., φ = 2× 10−4 and 2× 10−5). Note that the corresponding heat distributions
show noticeable non-zero heat at the left bottom of the domain. As φ decreases, a
sharper heat gradient is visible near the boundary.

Table 6.1 shows FETI-DPH’s dependence on φ and the effects of augmentation
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Table 6.1

FETI-DPH’s φ dependency for the heat control problem.

φ - + CPU RAUG- RAUG+ CPU

2E-2 33 32 9.4 13 13 6.2
2E-3 36 35 10.2 13 13 6.3
2E-4 39 38 10.4 13 13 6.2
2E-5 38 37 10.4 13 13 6.3
2E-6 34 34 10.5 13 13 6.3
2E-7 34 34 9.7 13 13 6.2
2E-8 38 38 10.6 13 13 6.1
2E-9 42 41 11.2 14 14 6.5
2E-10 47 44 12.1 18 17 7.0
2E-11 56 52 14.3 22 21 7.7
2E-12 69 62 15.8 28 26 8.8

in the FETI-DPH solver. The regularization parameter φ varies from 2 × 10−12

to 2 × 10−2. The mesh size is 2−11 and the convergence threshold is 10−10. The
size of each subdomain is 2−5 and the number of processes is 48. The second and
third columns show the number of FETI-DPH iterations without any augmentation,
and the fourth column shows the corresponding FETI-DPH CPU time in seconds.
The signs “-” and “+” indicate FETI-DPH solves on K − 1

i
√
φ
V and K + 1

i
√
φ
V,

respectively. The fifth and sixth columns show the number of FETI-DPH iterations
with edge-based rigid body modes augmentation, and the seventh column shows the
corresponding FETI-DPH CPU time in seconds. Table 6.1 shows that, in the absence
of augmentation, the number of iterations tends to increase, but not strictly, as φ
decreases. This dependence on φ is alleviated by the introduction of rigid body modes
augmentation and some CPU time is saved. Table 6.1 demonstrates that rigid body
modes augmentation works well for the thermal optimal control problem. The effects
of rigid body modes augmentation is even more dramatic in the case of solid elements,
as described in the following section. Further research on the existence of an optimal
augmentation for the thermal optimal control problem is an interesting future topic
(e.g., a set of modes that decreases the number of FETI-DPH iterations to an order
of a constant regardless of the values of φ). Table 6.1 also shows that almost the same
number of iterations of FETI-DPH is required on K− 1

i
√
φ
V and K+ 1

i
√
φ
V for each

value of φ. This result is not surprising, given that the two operators are complex
conjugate to each other, and consequently have complex conjugate eigenvalues, the
same pattern of clusterings, and an identical condition number.

There are two kinds of scalability tests for domain decomposition methods: nu-
merical scalability and parallel scalability [13]. Numerical scalability is studied by
varying the problem size, subdomain size, and the number of subdomains. Table 6.2
shows numerical scalability of FETI-DPH on the thermal problem (6.1). The number
of iterations is shown for various mesh sizes h and for various subdomain sizes H . The
regularization parameter φ is 2× 10−8. The convergence threshold for FETI-DPH is
10−10. The fixed ratio H/h = 26 is used. Because the ratio H/h is fixed to be 26, each
subdomain contains 4096 elements. The problem size is varied from around 15 thou-
sand degrees of freedom to 67 million degrees of freedom. Based on the theoretical
result of (5.12), the number of FETI-DPH iterations must be more or less constant no
matter what problem size is considered, provided that the ratio H/h is fixed. Indeed,
Table 6.2 shows that it is the case. As h decreases, the total number of elements
increases, meaning that the problem size increases. Table 6.2 shows that the number
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of FETI-DPH iterations actually decreases as the problem size increases, which is
consistent with (5.12). Again, almost the same number of iterations of FETI-DPH is
required on K− 1

i
√
φ
V and K+ 1

i
√
φ
V for each h.

Table 6.2

Numerical scalability of the FETI-DPH solver for a fixed φ value for the heat control problem.

num. of dofs num. of elem. h H nsub K−

1

i
√

φ
V K+ 1

i
√

φ
V

15,876 16,384 1/128 1/2 4 26 25
64,516 65,536 1/256 1/4 16 25 25

260,100 262,144 1/512 1/8 64 21 20
1,044,484 1,048,576 1/1024 1/16 256 15 15
4,186,116 4,194,304 1/2048 1/32 1024 13 13

16,760,836 16,777,216 1/4096 1/64 4096 12 13
67,076,100 67,108,864 1/8192 1/128 16384 12 12

Parallel scalability measures how fast a domain decomposition method converges
for a fixed problem size, a fixed subdomain size, and a fixed number of subdomains
with increasing number of processes. Table 6.3 presents the parallel scalability of
FETI-DPH for the heat conduction control problem (6.1). A mesh size h = 1/1024
(around 1 million degrees of freedom) and subdomain size H = 1/16 (4096 elements
in each subdomain) are used. The regularization parameter φ is 2 × 10−8. The
convergence threshold is 10−10. The number of processes (Np) varies from 1 to 144
and parallel speed-up is measured relative to the FETI-DPH CPU time of NP = 1. As
the number of processes increases up to 144, Table 6.3 shows that a parallel speed-up
of 26.8 is gained.

Table 6.3

Parallel scalability of the FETI-DPH solver for the heat control problem.

Np CPU time (sec) Parallel speed-up

1 101.99 1
2 52.60 1.9
4 28.13 3.6
8 15.51 6.6
16 9.02 11.3
32 6.02 16.9
64 5.52 18.5

128 4.30 23.7
144 3.81 26.8

The thermal element (i.e., finite element for Laplacian operator) is widely used
when one wants to verify a new numerical method or to analyze it. In the next section,
a more difficult problem is considered (in the sense that properties of a real material
are used and 3D solid elements are used).

6.2. Solid Cantilever Control. In this section, the proposed optimal control
techniques are applied to a linear static structural problem, a cantilever with solid
elements. In this case, the constraints in (6.1) are replaced by an elastostatic PDE.
The cantilever has a square cross-section of 1 × 1 m2 and a length of 3 m. The target
displacement ȳ is generated by running a forward PDE simulation with a uniform
pressure load of 100 kPa applied to the bottom surface of the cantilever. The fol-
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(a) (b)

Fig. 6.4. (a) a uniform downward pressure of 100 kPa is applied to the undeformed config-
uration of cantilever. (b) the deformed configuration that is used as a target state in the optimal
control problem.

lowing material properties are used: Young’s modulus of 20.7 MPa, Poisson’s ratio
of 0.45, and density of 1.1 kg/m

3
. The applied force and the initial configuration

of the cantilever are shown on Figure 6.4(a) and the corresponding target deformed
configuration on Figure 6.4(b). Note that the left end is completely fixed. The body
force is used as a control variable. Although this control variable is not practical
because the body force control is not physically attainable, this problem is useful to
investigate how the FETI-DPH solver performs on each factor of the Schur comple-
ment factorization for problems involving solid finite elements and linear elastostatic
PDEs.
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Fig. 6.5. (a) Condition number vs. φ (b) Relative constraint violation and relative difference
between the target and solution displacements.

Figure 6.5 shows the accuracy issue of the range-space method that was explained
in Section 3.1. The results were generated for a relatively small problem (h = 1/8 and
5184 degrees of freedom). Figure 6.5(a) shows how the condition numbers of both
the negative Schur complement S = KV−1K+ 1

φ
V and a complex factor K+ 1

i
√
φ
V

vary as φ varies. Both condition numbers increase as φ increases but the order of
magnitude of the condition number of the factor is one half that of S. Figure 6.5(b)
demonstrates the accuracy dependency of both the range-space and the full-space
methods on the value of φ by showing the relative constraint violation marked by a
blue line with dots and a green line with x symbol (see the constraint in (2.1)). The
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relative constraint violation is defined as

‖Ky +Kcyc −Vu‖2
‖Ky‖2

. (6.4)

As φ increases, the accuracy of the range-space method degenerates. For example,
for values of φ larger than 10−2, the constraint violation becomes larger than 10−4,
which is of questionable acceptability. On the other hand, the full-space method shows
high accuracy consistently for the entire range of φ values considered. It is possible
to achieve small improvements in the accuracy of the range-space method by using
iterative refinement and higher floating-point precision. However, this approach incurs
an additional cost and preliminary experiments suggest that it is not a competitive
solution. One could argue that the values of interest of the parameter φ for this
problem are the ones smaller than 10−5 because the relative difference between target
and solution states is greater than 83% for values of φ outside this range. For this range
of φ values, the accuracy of the range-space method is acceptable for this particular
mesh size (h = 1/8).

Table 6.4

FETI-DPH’s φ dependency for the structure control problem.

φ - + CPU RAUG- RAUG+ CPU A. speed-up

1E-7 327 344 909.9 30 33 187.4 4.9
1E-8 341 357 880.1 29 32 189.4 4.6
1E-9 286 300 777.4 29 31 192.4 4.0
1E-10 244 258 690.2 29 31 176.1 3.9
1E-11 228 239 673.9 29 30 185.3 3.6
1E-12 225 235 657.2 28 29 180.1 3.6
1E-13 220 229 652.3 27 28 193.6 3.4
1E-14 236 214 682.9 29 30 186.6 3.7
1E-15 262 260 773.2 34 34 173.5 4.5
1E-16 280 284 817.6 40 39 222.3 3.7
1E-17 315 316 976.3 46 46 214.1 4.6
1E-18 321 321 1009.6 52 52 236.5 4.3

Table 6.4 shows FETI-DPH’s dependence on the value of φ for the cantilever
control problem. The mesh size is h = 1/90 and the convergence threshold is 10−9.
The size of the subdomain is H = 1/6 and the number of processes is 64. The
second and third columns show the number of FETI-DPH iterations without any
augmentation, and the fourth column shows the corresponding FETI-DPH CPU time
in seconds. The signs “-” and “+” indicate the FETI-DPH solves on K− 1

i
√
φ
V and

K+ 1

i
√
φ
V, respectively. The fifth and sixth columns show the number of FETI-DPH

iterations with edge-based rigid body modes augmentation, and the seventh column
shows the corresponding FETI-DPH CPU time in seconds. The last column shows
the speedup due to augmentation. Without augmentation, the performance of the
FETI-DPH solver degrades as the value of φ increases from 10−12 to 10−7. This
makes sense because the condition number of the complex factors in (4.1) and the
Schur complement itself increase as φ increases (see Figure 6.5). However, for the
range of smaller φ values (i.e., less than 10−12), the number of FETI-DPH iterations
without augmentation increases as φ decreases. This is analogous to FETI-DPH being
dependent on wave numbers in acoustic problems if no augmentation is applied (i.e.,
more iterations are required for a larger wave number without augmentation) although
the complex factors are not the same as in the system that normally arises from a
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Helmholtz problem. In order to alleviate this deterioration, edge-based rigid body
mode augmentation is used. Table 6.4 shows that the augmentation decreases the
number of FETI-DPH iterations substantially and reduces the CPU time by a factor
of four on average. However, the rigid body modes augmentation is not optimal in
the sense that as φ decreases the number of FETIP-DPH iterations still increases.

Table 6.5 shows the numerical scalability of the FETI-DPH solver for the can-
tilever control problem. The number of iterations is shown for various mesh sizes h
and for various subdomain sizes H . The regularization parameter φ is 1×10−16. The
convergence threshold for FETI-DPH is 10−9. The problem size is varied from around
2 million degrees of freedom to 40 million degrees of freedom. As in the numerical
scalability test for the thermal problem, the H/h ratio is fixed to 15 (exactly 3375
elements in each subdomain) and the number of FETI-DPH iterations is counted for
both factors K− 1

i
√
φ
V and K+ 1

i
√
φ
V. As the problem size increases, the number of

FETI iterations required for convergence slightly decreases, which is again consistent
with the theoretical result (5.12).

Table 6.5

Numerical scalability of the FETI-DPH solver for a fixed φ value for the structure control
problem.

num. of dofs num. of elem. h H nsub K−

1

i
√

φ
V K+ 1

i
√

φ
V

1,976,400 648,000 1/60 1/4 192 43 43
3,847,500 1,265,625 1/75 1/5 375 41 40
6,633,900 2,187,000 1/90 1/6 648 39 38

10,517,850 3,472,875 1/105 1/7 1029 37 37
15,681,600 5,184,000 1/120 1/8 1536 36 36
22,307,400 7,381,125 1/135 1/9 2187 35 34
30,577,500 10,125,000 1/150 1/10 3000 33 33
40,674,150 13,476,375 1/165 1/11 3993 33 33

Table 6.6 shows the parallel scalability of FETI-DPH for the cantilever control
problem. The FETI-DPH CPU time and the corresponding parallel speed-up are
shown for the various numbers of processes. The regularization parameter φ is 10−12.
The convergence threshold is 10−9. A mesh size h = 1/90 (i.e., around 6.6 million
degrees of freedom) and a subdomain size H = 1/6 are used. The number of processes
(Np) increases from 1 to 64 and parallel speed-up is measured as the ratio with respect
to the CPU time of NP = 1. As the number of processes increases up to 64, Table 6.6
shows the speed up is greater than half the maximum possible.

Table 6.6

Parallel scalability of FETI-DPH solver for the structure control problem.

Np CPU time (sec) Parallel speed-up

1 5854.9 1.0
2 2834.6 2.1
4 1547.0 3.8
8 886.6 6.6
16 586.4 10.0
32 317.4 18.4
64 163.5 35.8

Due to the introduction of complex numbers in the factorization, more storage
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and more computational cost per solve are required compared to Pearson and Wa-
then’s approximation to the Schur complement (Sp in (3.4)). Thus, one must consider
the effectiveness of the complex factorization carefully although only one solve with
complex factorization is required in the range-space method and fewer iterations are
required in the full-space method. Table 6.7 reports comparison of CPU time and
number of iterations between Sp and Sc in the full-space method. The block diagonal
preconditioner of Murphy, et al. (3.3) is used. Comparison is made for various values
of φ and each solve is done by FETI-DPH with edge augmentation. The mesh size
is h = 1/30 and the convergence threshold for FETI-DPH is 10−9. GMRES is used
for the main solver and the convergence threshold for GMRES is 10−10. The size of
each subdomain is H = 1/2 and 64 processes are used. The second column (BSp

)
shows the CPU time for building an operator and the third column (SSp

) shows the
CPU time for one solve with Sp. The fourth column (NISp

) shows the number of
solves with Sp that are required for convergence. The fifth column (TCPU) shows
the total CPU time in seconds. The sixth to ninth columns show the corresponding
results for Sc. Note that the number of GMRES iterations required for convergence
with Sc is more than 3, which is not consistent with the spectral analysis done in [27].
Each solve time and building time is considerably higher for Sc than Sp, as expected.
However, the number of GMRES iterations required for convergence is much higher
for Sp than Sc. Additionally, the number of iterations for Sp increases as φ decreases,
while for Sc it is bounded above. For this particular problem Sp is a better choice for
relatively large values of φ (i.e., φ = 10−7), while Sc is a better choice for any value
of φ smaller than 10−9.

Table 6.7

Comparison between Sp and Sc in the full-space method.

φ BSp
SSp

NISp
TCPU BSc

SSc
NISc

TCPU

1E-7 2.1 2.0 43 88.1 9.2 3.9 25 106.5
1E-8 2.1 1.9 49 95.2 8.9 3.7 25 101.4
1E-9 2.1 2.0 55 112.1 9.6 4.1 25 112.1
1E-10 2.3 2.3 75 174.8 9.6 3.9 25 107.1
1E-11 2.4 2.4 77 187.2 9.3 4.1 25 111.8
1E-12 2.1 2.0 97 196.1 8.7 3.9 25 106.2
1E-13 2.2 2.0 97 196.2 9.2 4.6 25 124.2
1E-14 2.2 2.1 97 205.9 9.6 6.0 23 147.6
1E-15 2.2 2.1 110 233.2 8.8 5.6 23 137.6
1E-16 2.3 2.3 323 745.2 9.0 6.9 23 167.7

7. Conclusion. We have introduced a practical factorization of the Schur com-
plement that arises from distributed optimal control of linear static systems. Due to
the exact representation, if the range-space method is applicable, then one solve with
the Schur complement is sufficient to obtain an optimal control solution. However,
the Schur complement becomes ill-conditioned for large values of φ and as the mesh is
refined. For example, the Schur complement that arises from a 3D cantilever problem
with real material properties of rubber is prone to ill-conditioning when a relatively
large regularization value is used. In such a case, an inaccurate solution is likely to
be obtained if the range-space method is used, so solving a full KKT system simulta-
neously using a Krylov iterative method with a good preconditioner is recommended.
The complex factorization of the Schur complement introduced in this paper can be
used with a Schur-complement based preconditioner. The comparison between the
approximate Schur complement of Pearson and Wathen and the complex factorization
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as a preconditioner in the full-space method shows promising results for the complex
factorization even in the context of the full-space method. The Schur complement
solve is done with the parallel domain decomposition linear solver FETI-DPH. The
scalability of FETI-DPH (both numerical and parallel) as well as its dependence on
φ are studied in two academic problems: a thermal 2D problem and a structural 3D
problem. Edge-based rigid body modes augmentation is able to bring the number of
iterations down, but further research is necessary to find an optimal augmentation
in the context of PDE-constrained distributed optimal control. The combination of
exact representation of the Schur complement and good scalability of the FETI-DPH
solver in addition to extensibility of the representation indicates promise for use of
the complex factorization in more complicated and practical problems.
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